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Abstract

3D reconstruction from point clouds is a fundamental problem in both computer vision

and computer graphics. As urban modeling is an important reconstruction problem

that has various significant applications, this thesis investigates the complex problem

of reconstructing 3D urban models from aerial LiDAR (Light Detection And Ranging)

point cloud.

In the first part of this thesis, an automatic urban modeling system is proposed which

consists of three modules: (1) the classification module classifies input points into trees

and buildings; (2) the segmentation module splits building points into different roof

patches; (3) the modeling module creates building models, ground, and trees from point

patches respectively. In order to support city-scale data sets, this pipeline is extended

into an out-of-core streaming framework. By storing data as stream files on hard disks

and using main memory as only a temporary storage for ongoing computation, an effi-

cient out-of-core data management is achieved. City-scale urban models are success-

fully created from billions of points with limited computing resource.

The second part of this thesis explores the 2.5D nature of building structures. The

2.5D characteristic of building models is observed and formally defined as “building

structures are always composed of complex roofs and vertical walls”. Based on this

observation, a 2.5D geometry representation is developed for the building structures, and

used to extend a classic volumetric modeling approach into a 2.5D method, named 2.5D

xviii



dual contouring. This algorithm can generate building models with arbitrarily shaped

roofs while keeping the verticality of the walls. The next research studies the topology

of 2.5D building structures. 2.5D building topology is formally defined as a set of

roof features, wall features, and point features; together with the associations between

them. Based on this research, the topology restrictions in 2.5D dual contouring are

relaxed. The resulting model contains much less triangles but similar visual quality. To

further capture the global regularities that intrinsically exist in building models because

of human design and construction, a broad variety of global regularity patterns between

2.5D building elements are explored. An automatic algorithm is proposed to discover

and enforce global regularities through a series of alignment steps, resulting in 2.5D

building models with high quality in terms of both geometry and human judgement.

Finally, the 2.5D characteristic of building structures is adopted to aid 3D reconstruction

of residential urban areas: a more powerful classification algorithm is developed which

adopts an energy minimization scheme based on the 2.5D characteristic of building

structures.

This thesis demonstrates the effectiveness of all the algorithms on a range of urban

area scans from different cities; with varying sizes, density, complexity, and details.

xix



Chapter 1

Introduction

Three dimensional urban models are very useful in a variety of applications such as

urban planning, virtual city tourism, surveillance, disaster simulation, and computer

games. Most of these applications require city-scale urban models composed of simple

and elegant building models, tree models, and ground.

The advance of acquisition techniques has made aerial LiDAR (Light Detection And

Ranging) data a powerful 3D representation of urban areas. Equipped on aeroplanes,

laser scanners are able to capture the surface geometry of large cities in an accurate and

efficient manner. Billions of LiDAR points are collected for city-scale data sets. These

data sets usually contain every detail in an urban area including both important features

(e.g., detailed rooftops) and trivial details (e.g., residual sensor noise, undesired vegeta-

tion, and vehicles). In addition, the magnitude of LiDAR data limits its application.

The objective of this research is to reconstruct 3D urban models from aerial LiDAR

data. Specifically, the modeling approach desire following properties:

• Automation: Urban models should be generated in an automatic manner. Few

user interactions are introduced only when necessary.

• Discrimination: The method should be able to remove undesired features while

preserving important elements, e.g., buildings, and terrain.

• Efficiency: The method should create city-scale urban models from huge data

sets within reasonable time and space.
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• Seamlessness: The urban model should be generated in a seamless manner, mean-

ing that the LiDAR data should be processed as one undivided piece.

• Universality: The method should be able to process LiDAR data sets scanned

from different cities. Data sets with different density and scales can be handled

by the same framework with only a few parameters configured.

• High-quality outputs: The method should produce simple polygonal models fit-

ting the input point cloud in a precise manner. Since buildings are the key compo-

nent in urban areas, there are three specific requirements for the building models.

1. The reconstructed building models should contain small amount of vertices

and triangles, to enable applications such as efficient rendering.

2. Building models should fit the observation (e.g., the raw scan data and the

aerial imagery) in a precise manner.

3. Building models should be visually convincing in terms of human judge-

ment, because humans are the ultimate judge for model quality in most appli-

cations.

The first part of this thesis proposes a general 3D urban modeling system towards

these requirements. This system contains four main modules, namely, classification,

segmentation, building modeling, and terrain modeling. Given a LiDAR point cloud

as input, irrelevant features such as trees and noises are first classified from roof and

ground points, and removed in subsequent processing. A segmentation algorithm then

takes the remaining point cloud, and extracts individual buildings from terrain. These

point patches are sent into a building modeling module and a terrain modeling module

respectively to create elegant polygonal models.
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Figure 1.1: 3D reconstruction for the city of Atlanta from 683M LiDAR points, using
the streaming urban modeling system presented in Chapter 4. Bottom: four closeups of
the urban model, showing (a) an area with large flat structures; (b) a downtown area;
and (c,d) two residential areas.

In order to handle extremely large date sets in a seamless manner, the general urban

modeling pipeline is extended to an out-of-core execution architecture. The out-of-core

architecture benefits from a streaming process which utilizes free hard-disk space as

main storage while allocating main memory only as temporary space to store data for

ongoing computation. In other words, the streaming process takes data as a stream (usu-

ally, a disk file) - each system component reads from an input stream, loads necessary

data in-core, processes it; and once data is no longer needed for further processing, it is

written into an output stream.

3



This automatic system is tested on four different data sets to show the universality.

Urban models are automatically generated from aerial LiDAR data. The largest data

set that has been processed is Atlanta LiDAR data containing 683M points stored in

a 17.7GB disk file. The modeling system generates 1.12M triangles to represent the

buildings and 8.78M triangles for terrain, by 25 hours of unattended processing using

less than 1GB memory. The resulting urban model is shown in Figure 1.1. As illustrated

in the closeups, different types of building models are created successfully over the

entire urban area.

Based on this urban modeling system, the second part of this thesis studies the more

fundamental problem about the 2.5D nature of building structures. As shown in Fig-

ure 1.2, the LiDAR sensor captures the details of roof surfaces, but collects few points

on building walls connecting roof boundaries; in addition, users desire building models

composed of complex roofs and vertical walls connecting different roof layers. Both the

input and the objective of the building modeling problem show a 2.5D characteristic,

caused by the 2.5D nature of building structures due to human design and construction.

This 2.5D characteristic of building structures inspires a geometry representation

of polygonal building models, which forces the verticality of wall polygons. A robust

approach is developed in this thesis to create 2.5D building models from aerial LiDAR

point clouds, named 2.5D dual contouring. This method is guaranteed to produce crack-

free models composed of complex roofs and vertical walls connecting them. By extend-

ing classic dual contouring into a 2.5D method, building geometry is simultaneous opti-

mized over the three dimensional surfaces and the two dimensional boundaries of roof

layers. Thus, 2.5D dual contouring can generate building models with arbitrarily shaped

roofs while keeping the verticality of connecting walls. An adaptive grid is introduced

to simplify model geometry in an accurate manner. Sharp features are detected and

preserved by a novel and efficient algorithm.
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Dense sampling on roofs

Sparse sampling on walls Vertical walls

Detailed roofs

Figure 1.2: 2.5D nature of the building modeling problem. Left: aerial LiDAR has
dense sampling on rooftops but very sparse sampling on building walls. Right: desired
building models are usually composed of detailed roof structures and vertical walls.

While the building geometry describes where the building structures appear in the

three dimensional space, the building topology determines the existence of structural

pieces and the connections between them. My further research reveals that human vision

tend to be very sensitive in topology changes even the related structural pieces are small.

Therefore, 2.5D building topology is explored and defined as a set of roof features, wall

features, and point features; together with the associations between them. Based on

this definition, 2.5D dual contouring is extended into a 2.5D modeling method with

topology control. Comparing with 2.5D dual contouring, the new modeling method

put less restrictions on the adaptive simplification process. The reconstruction results

preserve significant topology structures while the number of triangle is comparable to

that of manually created model or primitive-based models.

Besides the 2.5D characteristic of building structures, other building natures due to

human design and construction are further explored. They appear in the form of global

regularities that encodes the orientation and placement similarities between planar ele-

ments in building structures. An automatic modeling algorithm is designed based on the
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study of 2.5D global regularities. This algorithm simultaneously detects locally fitted

plane primitives and global regularities: while global regularities are extracted by ana-

lyzing the plane primitives, they adjust the planes in return and effectively correct local

fitting errors. By aligning planar elements to global regularities, the modeling method

significantly improves the reconstruction quality in terms of both geometry and human

judgement.

When the urban modeling is applied to residential areas, rich vegetation becomes

an important urban feature, and thus should be carefully handled. Therefore. a robust

classification algorithm is proposed in this thesis, which effectively classifies LiDAR

points into trees, buildings, and ground. The classification algorithm adopts an energy

minimization scheme based on the 2.5D characteristic of building structures: buildings

are composed of opaque skyward roof surfaces and vertical walls, making the interior

of building structures invisible to laser scans; in contrast, trees do not possess such

characteristic and thus point samples can exist underneath tree crowns. Once the point

cloud is successfully classified, the system reconstructs buildings and trees respectively,

resulting in a hybrid model representing the 3D urban reality of residential areas.

The rest part of this thesis is organized as follows: Chapter 2 summarizes the related

literature to the urban modeling problem. Chapter 3 details a general urban modeling

pipeline that is extended into an out-of-core streaming architecture in Chapter 4. The

research based on the 2.5D nature of building structures include: 2.5D geometry rep-

resentation and 2.5D dual contouring in Chapter 5; 2.5D building topology research in

Chapter 6; 2.5D building modeling with global regularities in Chapter 7; and residen-

tial urban area reconstruction in Chapter 8. The conclusion and future work is finally

presented in Chapter 9.
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Chapter 2

Related Work

This chapter briefly reviews the related work in the scope of 3D urban reconstruction

from aerial LiDAR data. Previous research related to each specific topic is reviewed

individually in Section 4.1 for streaming approaches, Section 5.1 for classic dual con-

touring, Section 6.1 for topology control in volumetric modeling, Section 7.1 for shape-

from-symmetry methods, and Section 8.1 for tree detection and modeling algorithms.

Pioneer building modeling methods [1, 11, 22, 49, 50, 64] start by converting LiDAR

point cloud into a DEM (Digital Elevation Model), and then apply image processing

algorithms on these depth images to detect building footprints, fit parametric models

and reconstruct polygons. All of them share a similar building reconstruction pipeline

with three major steps: classification, segmentation, and building modeling.

Most existing research work is built upon this pipeline and advances the reconstruc-

tion quality by improving individual steps. Früh et al. [18] create building models with

facade by integrating aerial LiDAR and ground based LiDAR. Hu et al. [24] employ

aerial image and ground images to achieve a high resolution solution. Wang et al. [62]

concentrate on building footprint extraction problem. Verma et al. [60] propose a roof-

topology graph to find complex roof patterns from aerial LiDAR data. Lafarge et al. [33]

present a two-stages method which can find optimal configuration of parametric mod-

els via a RJMCMC sampler. Matei et al. [41] specialize segmentation for densely built

areas. Zebedin et al. [65] detect planes and surfaces of revolution. Poullis and You [48]

create simple 3D models by simplifying boundaries of fitted planes. Toshev et al. [58]

propose parse trees as a semantic representation of building structures. Lafarge and
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Mallet [34] combine primitives and a general mesh representation to achieve hybrid

reconstruction.

Since building models are usually considered to be the most important component

in urban areas, these research efforts have an emphasis on building reconstruction. In

general, most of these efforts attack the building modeling problem with primitive fitting

approaches. Specifically, local plane fitting is a popular strategy in extracting simple

roof primitives [41, 48, 60]. Strong urban priors are frequently introduced to restrict

the plane primitives. Typical priors include roof topology [60] and Manhattan-world

grammars [41, 48]. Other research work aims at extending the ability of representing

complicated shapes, by introducing additional primitive shapes and optimizing junctions

between fitted primitives [33, 34, 65].

Another branch of the urban reconstruction problem lies in vegetation detection,

which is believed to be a difficult task in the modeling systems. Several research

efforts [4, 5, 34, 39, 52, 58, 60, 62] address this problem. In general, these efforts employ

both geometry and reflection properties at each LiDAR sample point, and use a general

classifier to assign each point a class label indicating its category. Typical classifiers

include simple thresholding [60], SVM classifiers [52], or Adaboost classifiers [39, 62].

Although automatic solutions have been provided for various LiDAR data sets, to

the best of our knowledge, none of them can process an extremely large LiDAR data set

in a seamless manner. Instead, many of them (e.g. [41, 48]) partition huge LiDAR data

into tiles, process them one at a time, and merge the partial results together to generate

the aggregate model of a large scale city area. Artifacts can occur at seams even with

padding between tiles.

Another limitation of these methods is that they are usually designed and tested for

one specific data set. Prior knowledge learnt from this input data set is integrated into
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the algorithm. Thus they lose universality and may not perform well when dealing with

other data sets.

Finally, this thesis is the first to discover and formally define the 2.5D characteristic

of building structures. Theories and algorithms are developed based on the 2.5D nature

of buildings. The urban modeling results in this thesis are competitive in terms of both

geometry fitting quality and human visual judgement.
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Chapter 3

General Urban Modeling Approach

This chapter presents a fully automatic system which creates simple and elegant urban

models from aerial LiDAR data. The system takes only the aerial LiDAR point cloud

as input and works directly on the raw data without rasterizing it into a DEM (Digital

Elevation Model). The output contains two parts: a polygonal model representing the

terrain, and a set of simple and elegant building models. In a local area, roof boundaries

are aligned together as much as possible to improve the quality of the building models.

Section 3.1 proposes a general urban modeling pipeline, followed by the details of

each module in subsequent sections. Section 3.6 shows experiments on a couple of small

data sets chopped from different cities. These data sets contain small amount of points,

thus can be loaded in-core and processed at once.

3.1 Urban Modeling Pipeline

This section proposes an automatic urban modeling pipeline which sequentially executes

four individual processes as illustrated in Figure 3.1:

1. Classification: A classification module classifies vegetation and noise points

from building and ground points. The detected vegetation and noise points (green

and black points in the second sub-figure in the top row) are considered as irrele-

vant parts and thus are removed in subsequent processing.
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Figure 3.1: The general urban modeling pipeline includes four modules: classification,
segmentation, building modeling, and terrain modeling. In particular, the building mod-
eling module takes an individual point patch as input; detects plane patterns; extracts
boundaries of these planes; and finally create polygonal building models based on the
boundaries.

2. Segmentation: Using a distance-based region growing approach, the remaining

building and ground points are segmented into individual patches (points with

different colors in the third sub-figure in the top row).

3. Building modeling: Mesh models are created for each individual building patch,

following three steps:

(a) Plane fitting: Plane patterns are detected and fitted from the point cloud.

(b) Boundary detection: A watertight boundary is extracted for each plane

detected in the previous step.
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(c) Modeling: Mesh models are created from the boundary points. The roof

boundaries are simplified and neighboring boundary edges are snapped

together to reduce the cracks in the final result.

4. Terrain modeling: Taking the ground point patch as input, the terrain modeling

module generates a polygonal model with rasterization. Holes caused by occlu-

sion are filled by solving a Laplace’s equation.

To further improve the reconstruction quality of building models, I adopt the

assumption that the roof boundary edges usually fall into a set of principal directions.

An efficient method is proposed to learn the principal direction set from original data,

and align roof boundary segments along these directions automatically. This mecha-

nism enables arbitrary angles between neighboring roof boundary segments. In contrast,

many previous methods are limited by the pre-assumptions made on these angles, e.g.,

90◦, 45◦ and 135◦ in [62].

Another extension to this pipeline is the non-planar roof extension. In an industrial

site which contains several oil tins and tanks, the geometry of these models is in the form

of cylinders and cones. Thus, the user has the option to determine the shape of each

object via minimal interactions. RANSAC [14] is applied to estimate the parameters for

the pre-defined primitives.

3.2 Vegetation Detection

Vegetation, mainly in the form of trees, is an irrelevant part in most downtown urban

areas, thus should be eliminated in the first step. This section presents a novel classifi-

cation algorithm for vegetation detection.
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3.2.1 Features

Given a sample point in the raw LiDAR point cloud p ∈ P , Np = {q|q ∈ P, ∥p−q∥ <

δ} denotes the set of points within a small neighborhood of point p, and p is the centroid

of all points in Np.

Note that if p lies in an extremely sparse area, it loses its geometry significance.

Therefore, p is considered as a noise point. Specifically, p is detected as a noise point

iff |Np| < κ, where κ is a user-given threshold, empirically, equals to 10.

For a sample point p with enough points within its neighborhood Np, five features

are defined based on the local differential geometry properties:

1. Regularity: It measures if the point distribution around p is regular by calculating

F1 = ∥p− p∥. (3.1)

Intuitively, sample distribution around a roof point is more likely to be regular.

Thus the distance between a roof point and its neighbors’ centroid should be

smaller than that of a vegetation point.

2. Horizontality: Since aerial LiDAR data captures roof from a top view, the normal

at a roof point is more likely to be vertical. The second feature is defined as

F2 = 1− |np · ez|, (3.2)

where ez = (0, 0, 1) is the vertical direction, and np is obtained through covari-

ance analysis [47], i.e., to solve the eigenvector problem for the covariance matrix:

Cp =
1

|Np|
∑
q∈Np

(q− p)(q− p)T . (3.3)
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Figure 3.2: Illustration of normal variation measurements: (a) normals of points around
a roof ridge; (b) normal distribution on a Gauss sphere, red/green/blue arrows point to
the eigenvectors of Cn

p with lengthes equal to corresponding eigenvalues; (c) normals
of points in the neighborhood of a tree point. Both λn

1 and λn
2 are large due to the

irregularity of normals.

The three eigenvalues are sorted in ascending order: λ0 ≤ λ1 ≤ λ2. The eigenvec-

tor v0 corresponding to the smallest eigenvalue is the estimated normal at point

p.

3. Flatness: With covariance analysis results, the flatness at this point, also known

as surface variation[47], could be estimated as:

F3 =
λ0

λ0 + λ1 + λ2

. (3.4)

Similar to the previous features, a smaller flatness value indicates more possibility

for a point to be a roof point.

4. Normal distribution: Once the normal at each point is estimated, another covari-

ance analysis can be further applied over these normals. The solution of the
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eigenvector problem for a normal covariance matrix within a larger neighborhood

Nn
p = {q|q ∈ P, ∥p− q∥ < η}:

Cn
p =

1

|Nn
p |

∑
q∈Nn

p

nT
q · nq, (3.5)

results in eigenvalues λn
0 ≤ λn

1 ≤ λn
2 with corresponding eigenvectors vn

0 ,v
n
1 ,v

n
2 .

As Garland [20] and Pauly [47] point out, λn
1 measures the maximum variation of

these normals on the Gauss sphere, thus could be regarded as a kind of normal

variation. Therefore, one of the normal distribution features is defined as:

F4 = λn
1 . (3.6)

Apparently, a roof point prefers a smaller normal variation than a tree point.

Moreover, according to principal component analysis [30], the smallest eigenvalue

λn
0 measures the minimum normal variance, with its eigenvector vn

0 being the

direction on Gauss sphere along which normals spread out the least. Specifically,

λn
0 determines whether the normals spread in a narrow band area on the Gauss

sphere, or scatters irregularly. This property is particularly useful for sharp roof

features at planar roof patch intersections. For example, Figure 3.2 shows a roof

ridge broadly existing in urban area. Normals of these points form two clusters on

the Gauss sphere. Hence λn
1 (illustrated as the length of the green vector in Figure

3.2(b)) is large while λn
0 (length of the blue vector in Figure 3.2(b)) is very small.

By contrast, normal distribution around a tree point is fairly irregular and exhibits

large λn
0 and λn

1 (shown in Figure 3.2(c)). Therefore, the last feature is defined as:

F5 = λn
0 . (3.7)
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Figure 3.3: Feature values of a small piece of aerial LiDAR point cloud. The top-left
sub-figure is rendered with z-values as grey scales at points. Others are rendered with
colors representing corresponding feature values of the points. Blue points are more
likely to be roof/ground, while red points are more likely to be trees.

Figure 3.3 demonstrates these feature values of an example urban area. The top-left

sub-figure shows the input LiDAR data colored with its height value. The rest sub-

figures show the five features using point colors respectively. Blue color denotes a small

feature value (thus, roof-like); while red color represents a large feature value (tree-

like). The five features successfully distinguish vegetation points and building/ground

point even when they have similar height.

3.2.2 Classifier

Despite the removed noise points, two classes remains in this classification problem,

i.e., trees and building/ground. Thus, a linear classification hyperplane in the 5D feature

16



space is introduced to split the two classes of point samples. In particular, a discrimina-

tive function is defined as the linear combination of these five features:

K = ω0 + ω1F1 + ω2F2 + ω3F3 + ω4F4 + ω5F5, (3.8)

where ω0,1,2,3,4,5 are undetermined parameters. Once these parameters are determined,

the classification algorithm simply computes K for each point and determines its cate-

gory with sgn(K).

To automatically determine these parameters, supervised machine learning methods

are introduced which learn these parameters from a small but typical urban area with

manual labeling. In particular, any linear classifier can serve as the learning module,

including Linear Discriminant Analysis [15] and Support Vector Machine [2, 8]. For

efficiency and accuracy, an unbalanced soft margin Support Vector Machine algorithm

is adopted as proposed in [8]. The Support Vector Machine algorithm finds a hyperplane

that maximizes the margin between the two classes. Due to the mislabeled examples

and noise samples in the classification problem, there may exist no hyperplane that can

strictly separates the two classes, thus a soft margin extension is introduced to split the

examples as cleanly as possible, while still maximizing the margin distance. The soft

margin Support Vector Machine algorithm is detailed in [8] and a third-party library

SVM Light [29] is employed in the system implementation.

To further improve the classification results, a voting algorithm is introduced as a

post-processing step. Intuitively, points of a same category usually occur together in

the space. Thus, once all the points are labeled by the classifier, point p’s final label is

determined by voting from p’s neighboring points. That is, p belongs to tree category

only if the percentage of tree points in p’s neighborhood Np is greater than a threshold

ω. This threshold is also learnt from the labeled data set.
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(a) input LiDAR data (b) classification result (c) segmentation result

Figure 3.4: (a) Input LiDAR point cloud with color intensity representing the height at
each point. (b) Green points are detected as trees. (c) Segmentation result; with trees and
noises (black points) removed from the input, the segmentation algorithm splits building
roofs from the ground successfully.

3.2.3 Configuration and Results

In this classification algorithm, all the features are designed based on the local differen-

tial geometry properties. Without introducing data-set-related variants such as absolute

height and intensity, the proposed method achieve significant adaptivity to different data

sets. In the experiments, all the seven parameters ω0,1,2,3,4,5 and ω are learnt from a

100m × 100m labeled area from the city of Oakland. Once they are determined, they

work for all the testing data sets.

The only parameters that need to be configured for each data set are the sizes of the

neighborhood, i.e., δ and η. Since the neighborhood should be large enough to support

an effective covariance analysis, δ is set to the value which makes the average point

number in Np between 12 ∼ 20. As for η, since normals are estimated from points in

Np and thus are smoothed in some sense; the size of Nn
p should be larger than that of

Np to gain sufficient geometric significance. Thus, η is two times the value of δ.
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The classification algorithm achieves an accuracy above 95% on all testing data sets.

Figure 3.4 shows a 300m × 300m urban piece chopped from Oakland data set. Trees

and non-trees are correctly classified even at areas where points from both categories

have similar heights, as shown in the closeup of Figure 3.4(b).

The weights ω1,2,3,4,5 are learnt with a Support Vector Machine algorithm, and deter-

mined once and for all. In the experiments, they are:

ω1,2,3,4,5 = {2.5, 0.1, 1.7, 5.2, 20.4}. (3.9)

First, since all the weights are positive, each feature has a positive contribution to

the linear classifier. This observation concurs with human intuition. Second, this result

suggests that the normal variations appear to be the most important factor in the classifi-

cation problem, especially the minimal eigenvalue of the normal covariance matrix, i.e.,

F5.

3.3 Segmentation

Once trees and noises are eliminated from the LiDAR data, the next task is to identify

ground points and segment different building patches. This is achieved by a distance-

based segmentation algorithm based on the following criteria: a pair of points with their

distance smaller than a user-given threshold α are assigned to the same segment. With

non-overlapping point segments generated from building and ground points, the largest

patch is considered to be the ground patch. The rest point patches are identified as

different roof patches. Roof patches that have neighboring projections on the x-y plane

are considered to belong to the same building structure, and thus are merged into one

building patch.
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An example of the segmentation approach is illustrated in Figure 3.4(c). Tree points

and noise points are rendered with black color and removed from the input beforehand.

The segmentation algorithm splits the remaining points into several patches, with the

largest patch identified as ground and rendered with dark-grey color. The rest patches

are grouped together to form individual building roofs and rendered with different bright

colors in the figure. Since trees and points on the vertical walls (usually detected as

noise) are eliminated previously, there always exists a height gap between building roofs

and ground, which leads to a correct result of distance-based segmentation.

3.3.1 Region Growing Implementation

The distance-based segmentation algorithm can be easily realized by a region growing

implementation. Starting from an unlabeled seed point p, the region growing algorithm

searches its α-neighborhood Nα
p and assigns all the points within Nα

p to the same cluster

as p, denoted as Cp. Similar process is applied over all points in Cp repeatedly until the

cluster can grow no more. Then the segmentation algorithm shifts to the next unlabeled

point q and grows it into a cluster Cq. This algorithm runs iteratively until every point

has a cluster label.

3.3.2 Agglomerative Clustering Algorithm

To improve time efficiency, an agglomerative clustering algorithm is introduced using

the a union-find implementation [7]. The agglomerative clustering algorithm executes in

a bottom-up manner. It starts with each point as an individual cluster (or segment), then

traverses all the point pairs with point distance smaller than α, and merges the clusters

to which the two points belong.

The union-find implementation utilizes a disjoint-set forests data structure as illus-

trated in Figure 3.5. Each tree in the forest stores the points in a same cluster. Each point
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(a) Input points (b) An intermediate state (c) Set union operation (d) Find operation with flattening

Points Roots of set trees
A point applied with a find operation

Points on the root-seeking path

Figure 3.5: Agglomerative segmentation implemented using the union-find algorithm
presented in [7]

p holds a reference r(p) pointing to its parent node in the tree. The segment merging is

conveniently implemented by the union operation, which simply assigns one root as the

parent of another root, as shown in Figure 3.5(c).

To accelerate the process of retrieving root point for each cluster, the find operation

includes a flatten process which links each point on the root-seeking path directly to the

root, as shown in Figure 3.5(d). This flatten process is especially useful in the streaming

segmentation to avoid dangling pointers, as detailed in Section 4.3.3.

3.4 Building Modeling

This section presents the building modeling algorithm that generates a simple and ele-

gant mesh model from each individual building point patch. As shown in the bottom

sub-figure of Figure 3.1, the building modeling approach executes three steps, namely,

planar roof patch extraction, boundary detection, and model creation. The details of

these steps will be presented in the following sections. A non-planar roof extension

with user interaction is proposed in Section 3.4.4.
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3.4.1 Planar Roof Patch Extraction

Given a building point cloud, the first task in building modeling is to extract planar roof

patches from the input. As suggested by Verma et al. [60], this task can be achieved

using a similar distance-based segmentation as that proposed in Section 3.3, with dis-

tance defined based on the inner product of point normals instead of Euclidean distance.

That is, as point q is in point p’s neighborhood Np, they are neighboring only if they

satisfy: 1 − |np · nq| < β. Empirically, any β between 1 − cos(5◦) and 1 − cos(10◦)

works well.

However, in practice, this method may lose robustness when dealing with large and

smooth curved surfaces, such as the roofs of stadiums. In these cases, the whole curved

surface is detected as one planar patch, which conflicts with human intuition. Thus, an

iterative method is adopted to solve the plane fitting problem robustly. The general idea

is similar to the EM algorithm [17] .

Starting from a plane l determined by the position and normal of an unlabeled seed

point p, the plane fitting algorithm iteratively executes:

• E-step: A point set L is determined as the set of unlabeled points with Euclidean

distances to l smaller than a given threshold t, and normal differences less than β;

• M-step: Plane l is updated using least squares fitting with respect to point set L.

A planar roof patch is detected when the algorithm converges or has iterated enough

times. This algorithm is applied iteratively until each point is assigned to a plane. The

labeling of points around boundaries between these plane patches are further refined

using a k-means-like algorithm named the k-proxy clustering, as proposed in [6].

With small patches removed as insignificant features, the remaining planar roof

patches are considered as important elements in creating building polygons.
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3.4.2 Boundary Detection

The next step in the building modeling algorithm is to mark boundary points of each

planar roof patch. These boundary points will be later used in footprint generation and

polygon production. Some previous work, e.g., [62], finds boundary points by mea-

suring certain characteristics of roof points. These methods, although efficient, cannot

guarantee a watertight boundary, thus limit the subsequent processing. Other work uses

2D delaunay triangulation to find polygonal boundaries. E.g., Verma et al. [60] intro-

duce a plane ball-pivoting algorithm to triangulate roof points and detect boundaries.

These algorithms are able to generate perfect boundaries, but sacrifice time efficiency.

In addition, robust implementations for such algorithms are hard to achieve.

This section proposes an algorithm which combines the advantages of these two

kinds of algorithm. The proposed method is inspired by part of my early work about a

3D contouring algorithm in [68].

Initially, for each plane roof patch, all the roof points are projected on the x-y plane

and embedded into a uniform grid. The grid cells with roof points inside are marked as

object cells, and illustrated as the grey cells in Figure 3.6. With this uniform grid setup,

boundary points and boundary lines are generated respectively:

• Boundary points: For each grid edge l separating an object cell cin and a back-

ground cell cout (thick red edges in Figure 3.6), the nearest LiDAR point to l in

cin is marked as a boundary point p(l), shown as the red circles in Figure 3.6.

• Boundary lines: For each grid corner c (red squares in Figure 3.6) shared by two

boundary grid edges l1 and l2, a boundary line (p(l1),p(l2)) is created, shown as

the thin red lines in Figure 3.6.
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Figure 3.6: An illustration of the boundary detection algorithm. Circles represent the
LiDAR points projected on the x-y plane. The boundary of this patch is composed of
the boundary points (red circles) connected by boundary lines (thin red lines).

Intuitively, the result of this algorithm is the dual polygon of the object cell bound-

ary along grid edges. Since the latter is a watertight polygon, its dual polygon is also

watertight. This property is especially useful in the mesh creation.

The boundary extraction algorithm is efficient and robust. It produces a topology-

correct boundary, but cannot guarantee the geometry completeness. For example, in

Figure 3.6, there is one point outside the extracted boundary polygon. Since this sit-

uation happens rarely and has little effect on the subsequent processing, the resulting

boundary is a good approximation.

Morphological operations: Another advantage of this boundary detection algorithm

is that it supports morphological operations in an easy manner: after marking object

and background cells, one can treat this grid as a monochrome image and apply any

morphological operation [54] onto it. Figure 3.7 illustrates an example from part of an

industrial site. Directly extracting boundaries from the object patches produces numer-

ous artifacts, shown in (b). Hence, an opening morphological operation is applied to

remove the insignificant features, shown in (c).
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(a) (b) (c)

Figure 3.7: Boundary extraction for part of an industrial site: (b) without any mor-
phological operation; (c) with an opening morphological operation, most artifacts are
removed.

Configuration: The only parameter in the boundary extraction algorithm is the unit

length of the uniform grid. This parameter controls the connectivity of the patch. Similar

to the ball radius parameter in ball-pivoting algorithm used by [60], a large cell length

creates a coarse boundary, while a small cell length keeps details along the boundary

as well as noise. Empirically, a cell length that equals to the neighborhood size δ is

adopted.

3.4.3 Building Model Creation

So far the building point cloud has been split into several planar roof patches with their

boundaries marked out. A Naı̈ve modeling approach takes each boundary as a roof

polygon, and connects it to the ground by adding vertical walls. Solid building blocks

are created in this way, which are combined together to form 3D building models. A

min-max polygon simplification algorithm [32] is introduced to simplify the boundaries

and reduce the complexity of each building block. In practice, due to the residual sensor

noise, boundaries of neighboring planar roof patches are not strictly aligned together,
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thus the Naı̈ve approach may generate overlaps and cracks between neighboring build-

ing blocks.

My study observes the fact that most boundary line segments in a local area fall into a

couple of directions, known as principal directions. Once detected, they are used to align

boundaries before polygon simplification. In addition, if two segments from different

roof patches are aligned to the same direction and the distance between their projections

on x-y plane is small, they are very likely to be the common boundary segment shared

by the two roof patches (when their heights are close), or be the two ends of a vertical

wall (when there is a height gap). Based on these observations, a four-steps algorithm is

designed to improve the modeling quality.

Principal direction detection

Intuitively, the principal directions are the boundary edge directions which most

commonly appear in the local area. Thus, the detection algorithm estimates the tangent

direction at each boundary point using a 2D covariance analysis, and then employs a

histogram to statistically analyze these directions. Principal directions are detected as

the peaks of this direction histogram.

For robustness, a Gaussian filter is applied to smooth the histogram before detecting

peaks. Specifically, the histogram is modified by convolution with a Gaussian function

g(x) =
1√

2π · σ
· e−

x2

2σ2 . (3.10)

The local maxima with sufficient samples of this smoothed histogram are detected

as peaks, i.e., principal directions.

Figure 3.8(b) shows the direction histogram of a Denver city piece shown in Fig-

ure 3.8(a). Four principal directions are detected: 0◦, 43◦, 90◦, 133◦, which can be sepa-

rated into two orthogonal pairs, illustrated as the colored arrows in Figure 3.8(a). This
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Figure 3.8: Building modeling using principal direction snapping: (a) input LiDAR
point cloud chopped from Denver city; (b) histogram of boundary line directions, with
four principal directions detected and marked in the figure; (c) boundaries of planar
roof patches are snapped onto the principal directions and simple building models are
created.

phenomenon concurs with the observation made by the previous work that orthogonal

corners are a common pattern in building footprints. In addition, 0◦ and 90◦ directions

contain less samples than the other two. They represents the chopping boundary of the

area.

Principal direction snapping

During this procedure, the boundaries of planar roof patches are snapped to the

principal directions as much as possible without exceeding a small error tolerance ϵ. A

greedy algorithm is applied over each patch boundary loop B, detailed as follows.

Every boundary point and principal direction pair (bi,dj) defines a line in 2D space:

L(bi,dj) = {p|(p − bi) × dj = 0}. For each such pair, starting from the seed point

bi, the longest continuous point sequence is detected along B, in which all the points
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have a distance to L smaller than an error tolerance ϵ. I.e., in this continuous boundary

segment S(bi,dj), all points satisfy:

distance(p, L(bi,dj)) =
|(p− bi)× dj|

|dj|
< ε. (3.11)

The snapping algorithm then iteratively does the followings: (1) detect the point-

direction pair (bmax
i ,dmax

j ) which maximizes the segment length |S(bi,dj)|; (2) project

(snap) the points in S(bmax
i ,dmax

j ) onto line L(bmax
i ,dmax

j ); and (3) remove intermedi-

ate points in S(bmax
i ,dmax

j ) from B. The last step prevents overlaps between different

segments. An exception is the end points of segments, which can belong to two bound-

ary segments. The iterative process stops when the size of the longest boundary segment

falls under a certain value (empirically, 10 points).

Neighbor segments snapping

After aligning segments with principal directions, the modeling results can be fur-

ther improved by snapping neighbor segments to form vertical walls and avoid cracks.

Two boundary segments L(b1,d) and L(b2,d) are neighbors when they have the same

direction d and their distance is smaller than a given threshold, i.e.,

distance(L(b1,d), L(b2,d)) =
|(b1 − b2)× d|

|d|
< ϵl. (3.12)

For each such neighbor boundary segment pairs.

• If they are from the same planar roof patch, and point toward the same direction,

these two segments are snapped onto the same line. This operation handles the

case that a line segment is broken into several segments due to noise or occlusion.

• If they are from different planar roof patches, and point toward opposite directions

(i.e., are of the opposite orientation), the snapping algorithm first checks if they
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overlap when snapped to the same line. If so, they must be the common boundary

segment shared by the two roof patches (when their heights are close), or be the

two ends of a vertical wall (when there is a height gap). Thus, they are snapped

together to create corresponding features.

Polygonal mesh creation

After boundary edge segments are detected and snapped to the principal directions,

a polygon is created for each planar roof patch. Along the boundary loop, if two con-

sequent segments share a common boundary point, the polygon simply connects them

together. Otherwise, the min-max polygonal simplification algorithm [32] is adopted to

simplify the intermediate point sequence between the two segments.

As mentioned previously, when all these polygons are created, vertical walls are

generated to connect two snapped polygons, or a roof polygon and ground. The final

model is the composition of all the building blocks.

Figure 3.8 demonstrates a whole pipeline to create a building model. Starting from a

building roof patch, plane patches are detected and boundaries are extracted. Then these

boundaries are snapped to the principal directions which are detected in Figure 3.8(b).

In addition, neighboring segments are aligned together to form vertical walls. The final

result shown in Figure 3.8(c) contains 72 triangles, which is simplified from a building

patch with 9,778 roof points.

3.4.4 Non-Planar Roof Extension

One limitation of this automatic building modeling algorithm is that it only supports flat

roofs. However, in some cases, there are non-planar objects in the data set which need

special treatments. For example, Figure 3.9(a) shows an industrial site in which the most

interesting objects are the oil tins and tanks represented in cylinder and cone shapes.
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(a)

(b)

(c)

Figure 3.9: Reconstruction of an industrial site using non-planar roof extension: (a)
input LiDAR data; (b) detected object patches are rendered with bright colors, while
ground and noise are rendered with dark-grey and black; (c) the reconstructed models,
with different types of objects generated in different ways.

These shapes increase the complexity of the object reconstruction problem. However,

fortunately, these non-planar shapes usually fall into a couple of specific patterns. There-

fore, once the pattern types are known, typical pattern recognition algorithms such as

RANSAC [14] can be applied to estimate parameters and create 3D models.

In particular, user interaction is introduced to identify the pattern types. The initial

LiDAR data is first segmented into different patches and the noise/tree/ground points

are removed from the data set. Then the object patches are exhibited to the user as Fig-

ure 3.9(b). The user can move his mouse onto any object patch, click to select this patch,

and press a key to specify its pattern type, e.g., cone, cylinder, or planar-roof object. The

modeling program automatically extracts boundary loops for each object, as presented

in the previous sections; and a RANSAC algorithm [14] based on the identified pattern
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type is applied to estimate the parameters of the model. The reconstruction result is

shown in Figure 3.9(c). Objects of different patterns are created successfully.

3.5 Terrain Modeling

The last part of the general urban modeling pipeline is terrain modeling, which is

achieved by rasterizing the detected terrain point patch into a DEM (Digital Elevation

Model). Specifically, all the terrain points are embedded into a uniform grid spanning

over the entire urban area. One mesh vertex is created at the center of each grid cell

with its height being the average height of all terrain points in this grid cell. Due to the

occlusion by overground objects such as buildings, trees, and vehicles, the uniform grid

may have empty grid cells at the occluded areas. Thus, the terrain modeling module

fills holes by solving a Laplace’s equation ∇2z = 0 taking the heights in all empty grid

cells as unknowns and the heights in all non-empty cells as the boundary condition. In

particular, for each empty cell at (i, j),

4zi,j = zi−1,j + zi+1,j + zi,j−1 + zi,j+1. (3.13)

The unknown heights are calculated by solving this equation array, and the ground

mesh is a DEM connecting all these vertices.

3.6 Experimental Results on Small Sample Data Sets

The general urban modeling system is tested on three different data sets: Denver, Oak-

land, and an industrial site. The resolution of these data sets varies from 6 samples/m2 to

17 samples/m2 In order to process all the data in-core, a 1km-by-1km piece is chopped

from Denver as shown in Figure 3.10(a) and a 600m-by-600m piece is chopped from
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Figure 3.10: Automatic urban modeling of a 1km× 1km piece from the city of Denver:
(a) input LiDAR data; (b,c) modeling result viewed from different perspectives; (d,e,f)
closeups of the modeling result with initial point cloud overlayed

Oakland as shown in Figure 3.11(a). All the experiments are made on a consumer-

level laptop (Intel Core2 1.83GHz CPU, 2G memory) with an external hard disk. The

time cost of the entire system is proportional to the number of input points, with a ratio

around 8 minutes/million points.

Figure 3.10 shows the reconstruction results of an urban area in the city of Denver.

The resulting building models are composed of simple and clean triangular meshes, thus

are ideal to some applications such as virtual city tourism. In addition, building blocks

are aligned tightly together and form building models of good shapes. As shown in

Figure 3.10(d,e,f), these building models fit the raw LiDAR point cloud in an excellent

manner.
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Figure 3.11: Urban modeling of an area in the city of Oakland: (a) input LiDAR point
cloud, with intensity representing point height; (b) a histogram with seven principal
directions detected and illustrated as colored arrows in (a); (c) reconstructed building
models; both orthogonal corners and non-orthogonal corners are reconstructed correctly.

To further demonstrate the ability of supporting multiple principal directions, the

system is tested on a challenging area from the city of Oakland, as shown in Figure 3.11.

Seven principal directions are automatically detected from the original data sets, which

are illustrated as the arrows in Figure 3.11(a). Since the general modeling system has

no pre-assumptions on the corner angles, correct models are generated with corners of

angles between any two principal directions, which may be 90◦, 45◦, or any other angle;

shown in Figure 3.11(c).

The final testing data set is an industrial site shown in Figure 3.9(a). This data set

is used to demonstrate the non-planar roof extension to the urban modeling system.

Besides plane-shaped roofs, two new types of geometry patterns are involved, namely,

a standing cylinder with a cone on top of it (an oil tin) and a lying cylinder (a tank).
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Objects of all three patterns are successfully detected and reconstructed by the proposed

approach, as shown in Figure 3.9(c).
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Chapter 4

Streaming Urban Modeling for

Large-Scale Data Sets

Like many previous work, the automatic urban modeling pipeline proposed in Chapter 3

is an in-core method. In other words, it needs to load all the LiDAR data into the memory

before processing. Thus, there is a conflict between the increasing size of data sets and

the limitation of computer hardware.

A common way to alleviate this problem is to partition the whole data set into small

tiles and process them one at a time (e.g. [41, 48]). By merging building models gen-

erated from different tiles, this approach can produce 3D models from large LiDAR

data sets. However, it may introduce artifacts alongside the boundaries between tiles.

Although these boundary effects can be moderated by introducing extra processing on

boundary regions, the additional processing for tile partitioning, boundary handling and

modeling merging is inefficient, tedious and may introduce ambiguity (e.g. large build-

ings that span the intersections of multiple tiles).

This chapter presents a streaming framework to handle extremely large data sets in

a seamless manner, meaning that the proposed method needs no special treatment for

tile-boundaries. By storing data as stream files on hard disks and using main memory as

only a temporary storage for ongoing computation, the method achieves efficient out-of-

core data management. This gives the urban modeling system the ability to handle data

sets with hundreds of millions of points in a uniform manner. For example, by adapting

the automatic urban modeling pipeline into this streaming framework, the whole urban
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model of Atlanta is reconstructed from 17.7GB LiDAR data with 683M points by under

25 hours of unattended processing using less than 1GB memory. As a comparison, an

in-core program would need more than 100GB memory to process this data in one pass.

Section 4.1 briefly reviews the state-of-the-art streaming approaches. Section 4.2

presents a streaming framework. In Section 4.3 the general urban modeling system pro-

posed in Chapter 3 is adapted into the streaming framework. Experiments on different

city-scale data sets are given in Section 4.4.

4.1 Review of Streaming Approaches

To solve the conflict between extremely large data sets and computer hardware limi-

tation, streaming methods are developed in geometry modeling and computer graphics

areas. They have succeeded in a board variety of applications, such as mesh process-

ing [26] and compression [25], tetrahedral mesh simplification [61], level sets meth-

ods [45], point cloud processing [46], LiDAR data rasterization [28], dynamic process-

ing [35], Poisson equation solver [53], and delaunay triangulation [27].

Here I highlight [27], [28] and [46]. Isenburg et al. [27, 28] reveal the local spatial

coherence of aerial LiDAR data and propose a grid-based indexing structure and a spa-

tial finalization mechanism, which is the basis of the approach proposed in this chapter.

Pajarola [46] performs a sequence of operations on a data stream. To allow data blocks

to be in different states and deal with transitions between states, he arranges data points

into a FIFO queue by sorting the data along one dimension of the largest extent, which

is less efficient and general, compared with the state propagation mechanism for solving

the same problem, as stated in Section 4.2.
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4.2 Streaming Framework

Generally, the streaming framework is an out-of-core architecture. A streaming pro-

gram acts as a frontier through the data stream - it reads from an input stream, loads

necessary data in-core; processes data; and once the data is no longer needed for further

processing, it is written into the output stream. To adapt the general modeling pipeline

into this out-of-core architecture is particularly difficult, because each urban modeling

module in the general pipeline involves several intermediate steps. Each step usually

relies on one point’s neighboring points being processed by some preceding steps. E.g.,

in classification, normal covariance analysis over a point p requires position covariance

analysis results on all p’s neighboring points. Thus, these intermediate steps cannot be

batch-processed, and execution order of these steps must be carefully determined.

My research achieves this goal by defining streaming operators and steaming states

formally in Section 4.2.2, and introducing a state propagation algorithm to determine

the execution order in Section 4.2.3. Section 4.2.1 gives the definition of point stream

and reviews the finalization mechanism as first proposed by Isenburg et al. [27].

4.2.1 Point Streams and Finalizer

As observed by Isenburg et al. [27] and Pajarola [46], spatial coherence, which either

appears in the original data set or is the result of a resorting algorithm, can greatly

improve the memory efficiency in an out-of-core algorithm. To exploit such spatial

coherence, point stream is defined as the basic form of data that is processed in a stream-

ing framework:

Definition 4.1 A point stream is a FIFO queue composed of point records and finaliza-

tion tags.
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Figure 4.1: Finalization result of the Oakland data set with cell colors in (b) representing
the finalization time. Spatial coherence is revealed by the regularity of color distribution.

A point stream is generated by inserting finalization tags into original input data,

which is done by the pre-processing module called Finalizer. A finalization tag fA is a

symbol to indicate that all the point records in a spatial area A has appeared in the point

stream before it. This is necessary because the original data usually is not spatially

ordered strictly. When a streaming program meets fA, it gets the guarantee that the

information within A is available and further actions can be taken.

In particular, the input data is partitioned into 2k × 2k uniform rectangle grid, so that

each cell is the basic unit of spatial area in streaming processing. Therefore, the task of

the Finalizer is to insert one finalization tag for each such cell into the input data.

Note that the finalization tags only provide a mechanism to reveal the spatial coher-

ence but not to generate it. For example, in the worst case, the last point of each grid cell

appears at the very end of the input data; the finalization tags will then all be inserted

at the end of the stream and no memory efficiency can be produced. Fortunately, the

point sequence in the aerial LiDAR data shows remarkable spatial coherence to make

significant memory efficiency [27]. Also, the spatial coherence can be further enhanced

by a chunking algorithm which partially resort the point records [27].
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Figure 4.1 shows the finalization result of the Oakland data set. The colors illustrate

the time when a grid cell is finalized in the point stream. The spatial coherence between

grid cells is revealed by the regularity of the color distribution.

4.2.2 Streaming Operators and States

The basis of the point stream processing framework is the following observation: most

of the complicated local algorithms can be decomposed into a series of streaming oper-

ators, which is a generalized form of the “stream operators” defined in [46].

Definition 4.2 A streaming operator Φk(pi) is a local operator which requires all the

points in pi’s local neighborhood Nk(pi) to be at streaming state sk−1 or higher state;

Φk(pi) takes these points as input and transit point pi to streaming state sk.

Here a series of streaming states s0, s1, . . . , sm is defined as follows: the first state s0

is always “Unread” and the last state sm is always “Written and released”. Except for

the last state, the information in a point record at a lower state is always a subset of the

information at a higher state. In a complete streaming process, each point sequentially

experiences states from s0 to sm. A state transition from sk−1 to sk can only be invoked

by a streaming operator Φk.

The streaming classification module is demonstrated here as an example. All the

points are in the initial state s0 =“Unread”. The first streaming operator Φ1(pi) reads

pi from the point stream into memory and changes its state from s0 to s1 =“Read”.

The second operator Φ2(pi) collects the positions of points in pi’s local neighbor-

hood N2(pi), uses these information to estimate pi’s normal, then transits pi into state

s2 =“With normals”. During this process, all the points in N2(pi) must be at least at

streaming state s1, i.e., read from the stream and loaded in-core. In a similar manner,

the following operators are executed sequentially until point pi finally gets into state
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sm−1. The last stream operator Φm(pi) then writes it to the output stream, releases

it from memory and turns its state into sm =“Written and released”. In this whole

process, point records which are in the first and last states are stored in disk files, and

only a small fraction of points in intermediate states need to be loaded in-core. These

intermediate states are called active states.

To determine when an operator Φk can be invoked, scope radius is defined:

Definition 4.3 The scope radius R(Φk) is the radius of point pi’s neighborhood Nk(pi)

required by Φk(pi).

R(Φk) reflects the size of the area affecting Φk. For convenience, let R(Φk) = 0

when the streaming operator Φk does not need information from the local neighborhood,

e.g., a “read from stream” operator. In other cases, it is determined by the corresponding

streaming operator. E.g., the “normal estimation” operator of the classification module

requires a scope radius equal to the neighborhood size δ defined in Section 3.2. The only

exception is the scope radius of the last operator Φm, which is forced to be the largest

scope radius of all the other streaming operators, i.e.,

R(Φm) = max{R(Φ1), R(Φ2), . . . , R(Φm−1)}, (4.1)

because Φm is the only information-subtracting operator – once performed, the point

record is no longer available in the memory. By forcing R(Φm) to be the largest scope

radius, Φm(pi) is applied only when all the points in Nm(pi) are at least at state sm−1

(written or waiting to be written), so that no point still requires information from pi to

complete a streaming operator Φk, k < m.

The scope radius is also helpful in determining the size of the spatial unit (cell).

The side length of a grid cell must be no less than R(Φm), so that the impact of any
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streaming operator applied on a cell c is restricted within its 1-ring neighborhood. This

is particularly convenient for the state propagation algorithm in the following section.

4.2.3 State Propagation

State propagation is an algorithm which performs the streaming operators in the correct

order.

State propagation uses cell as the basic unit to perform an operator, and operator

Φk performed on cell ci,j is denoted by Φk(ci,j). As discussed before, to determine

whether Φk(ci,j) can be invoked, one only needs to check if all points in ci,j’s 1-ring

neighborhood are at least in state sk−1. In addition, if a cell reaches a new state sk−1

by operator Φk−1, only its 1-ring neighbor cells may receive the direct impact from this

transition, e.g., a neighbor cell may now satisfy the state prerequisite for Φk. Based on

this observation, the key idea of the state propagation algorithm is to notify all the 1-ring

neighbors whenever a cell’s state is changed by completing a new operator.

The algorithm starts by reading a cell cnext from the input point stream Sin . A

recursive function cellAction() is then called to perform steaming operators in an orderly

manner. Taking a cell c and a streaming operator Φk as input, cellAction() first checks

if the state prerequisite for operator Φk(c) is satisfied. If not, it aborts the operation;

otherwise, it performs operator Φk(c), transit cell c to state sk and notifies each cell c∗ in

c’s 1-ring neighborhood by recursively calling cellAction() for c∗ and operator Φk+1. In

this way, the state change of the initial cell cnext is propagated in the grid and operators

will be performed once they are ready. The pseudo-code of the algorithm is shown in

Table 4.1.

Figure 4.2 shows an example of a state propagation procedure in a 4-states prob-

lem. The state of each cell is denoted by the number and the color of the cell. In the

first step, a cell c1,1 (marked by the black frame) is read from the point stream, and its
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/*************************** Main program ***************************/
Input: a point stream Sin ; a set of streaming states {s0, . . . , sm}; and a set of streaming
operators {Φ1, . . . ,Φm}.
Output: a point stream Sout .
While Sin is not empty do:

• Read the next cell cnext from Sin ;
• Call function cellAction(cnext ,Φ1).

End of main program.

/*********************** cellAction() function ***********************/
Input: a grid cell c at state sk−1; and a streaming operator Φk.
For each cell c∗ in the 1-ring neighborhood of c do:

• if the state of c∗ is lower than sk−1, then return “not ready”.

/* If not returned, all cells in the 1-ring neighborhood pass the state test. */
Execute Φk(c). /* take action and change the state of c to sk */
For each cell c∗ in the 1-ring neighborhood of c do:

• if the state of c∗ is sk, then call function cellAction(c∗,Φk+1).

End of cellAction() function.

Table 4.1: State propagation algorithm
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Figure 4.2: An example of the state propagation algorithm. The numbers and colors
denote states. When the state of a cell is changed (marked with black frame), it notifies
its 1-ring neighborhood (red frame) to check if any of them is ready for the next operator.
The whole process is a recursive procedure.
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state is transited to s1 via a call to cell-Action() function, which then leads a number

of streaming operators performed on other cells and state updates. Cells that reach the

final state will be written to the output file. The propagation terminates when no more

streaming operator is possible (i.e., none of them fulfill their prerequisites), and the state

propagation algorithm will read a new cell into the active set and repeat the propagation

until all input data is fully processed.

4.3 Streaming Urban Modeling

This section shows how to adapt the general urban modeling system into this stream-

ing framework. Section 4.3.1 presents the modified pipeline. The subsequent sections

then detail modules including streaming classification, streaming segmentation, building

modeling, and terrain modeling.

4.3.1 Streaming Modeling Pipeline

An overview of the streaming pipeline is demonstrated in Figure 4.3. The input LiDAR

data (usually stored in a list of disk files) is sequentially read by a pre-processing module

called Finalizer, which inserts finalization tags into the data, and produces a point stream

as defined previously.

Taking this point stream as input, two specific streaming modules are performed

sequentially: the Classifier which classifies vegetation points from building and ground

points, and the Splitter which segments single building patches from the building and

ground points. Both are implemented following the formulation of streaming operators

and states in the last section. In the Classifier and Splitter blocks of Figure 4.3, the solid

colored cells denote active (i.e., in-core) data set with different colors corresponding to

different streaming states; the dark red region denotes processed and released data; and
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Figure 4.3: An illustration of the streaming building reconstruction pipeline. A pre-
processing module (which is called Finalizer in [27]) inserts finalization tags (yellow
ovals) and generates a point stream which flows over the Classifier and the Splitter
sequentially. Both components introduce a state-propagation mechanism so that only
data with active states (solid colored cells in Classifier and Splitter) are loaded in-core.
The Splitter finally generates a point stream and a building stream; which are converted
into a terrain model and various building models using the Terrain Generator and the
Modeler respectively.

the dark blue denotes the input waiting to be read. The active set progresses as a frontier

through the input stream until all data is processed.

The Splitter outputs two streams: a point stream with geometry information of all

ground points and a building stream which consists of individual building patches. The

point stream is converted to a terrain model using a Terrain Generator; and a Modeler is

responsible for turning each building patch into a polygonal building model. The whole

urban model is finally created by combining them together.
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Streaming operators Streaming states
Φ1: Read data from input point stream and allocate
memory.

s0: Unread

s1: Read
Φ2: Apply covariance analysis on positions to
estimate normals; and compute F1,2,3.

s2: With normals
Φ3: Apply covariance analysis on normals; calculate
F4,5; and apply SVM classifier.

s3: Classified
Φ4: Refine classification by making points in local
neighborhood vote on result.

s4: Refined
Φ5: Write point records to output point stream, and
release them from memory. s5: Written and released

Table 4.2: Streaming operators and states for classification

4.3.2 Streaming Classification

The first step of the classification algorithm proposed in Section 3.2 is a Support Vector

Machine training procedure [2, 8] based on local geometric features. This off-line step

is processed once and for all, thus needs not to be adapted into the streaming framework.

With the training results, the classification algorithm introduces a linear classifier

with five types of features based on differential geometry properties: regularity F1,

horizontality F2, flatness F3, and two normal distribution measurements F4 and F5. To

compute these features for a point p, covariance analysis is performed twice on its local

neighborhood. The trained linear classifier then computes the classification result of p

from these features. Finally, the classification results on p’s neighbor points will vote

for the final label of p in a refinement step.

Since each part of this algorithm requires only the information within a local neigh-

borhood of point p, it is easily decomposed into a series of streaming operators and

states shown in Table 4.2, which are placed into the streaming framework and form up

the Classifier module.
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Figure 4.4: The streaming agglomerative clustering algorithm stores set-tree roots
(marked with red frame) in a global hash table. It first performs a union operation
on each neighbor point pair illustrated as the dotted line in the left figure. Then the
algorithm flattens the set-trees shown in the middle figure and push new roots into the
hash table (right figure).

4.3.3 Streaming Segmentation

The segmentation module aims to divide the input points into a ground patch and indi-

vidual building patches. When adapting the general segmentation approach (Section

3.3) into the streaming framework, the main difficulty lies in the global characteristic

of the segmentation problem. Specifically, patches (e.g., the ground patch) may span

over the entire area, and thus one cannot throw away all the information when data is

written into the output stream. Instead, a small-but-sufficient global indexing structure

is required, which is never released from memory to make the segmentation algorithm

execute in a correct manner.

I choose to extend the agglomerative clustering algorithm proposed in Section 3.3.2

into a streaming segmentation approach, since it is a bottom-up algorithm and most

of the structural information is stored as parent pointers attached to each point. The

remaining structural information which needs to be processed globally is the temporary
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roots of each trees, which are stored in a hash table as the global indexing structure.

Here I call these roots “temporary” because they may be merged to the same tree in later

processing. However, in order to avoid dangling pointers, once a point is pushed into

the hash table, it is never released from the memory.

Even with this global indexing structure, there is still a danger of visiting dangling

pointers. During streaming process, some points may be outputted to disk and released

from the active set. Thus, if a point’s root-seeking path contains some released points,

invalid pointers will be visited when retrieving the cluster of this point. To solve this

problem, find operation is introduced to flatten the root-seeking path as proposed in

Section 3.3.2. The idea is straightforward: every time the agglomerative clustering

algorithm in a cell c finishes, a find operator is applied on all points in c’s 1-ring neigh-

borhood, to flatten the root-seeking path of these points; after this, the newly created

roots are pushed into the hash table. Thus, every point that has been touched in this

process is guaranteed to have a parent pointer pointing to a root in the global hash table,

which will not be released.

The pseudo-code of this algorithm is shown in Table 4.3. Figure 4.4 shows an exam-

ple that illustrates the streaming agglomerative clustering process. The algorithm starts

with a cell c whose 1-ring neighborhood are all available in memory. The pairs of points

involved in c whose distances are small enough for a merging operation are connected

in dashed lines. To process c, a union operation is performed on each such pair of points

and their segments are merged (middle figure). The algorithm then performs a find oper-

ation over all the points touched in the first step to flatten all the trees which have been

changed. Finally, the new roots generated during this process are added into the hash

table.
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Input: a cell c at state s1, with its 1-ring neighborhood at state s1 or higher; root hash
table H; and the distance threshold α.
/* Apply union operation over cell c */
For each point pair (p,q) where p ∈ c and ||p− q|| < α, do:

• Call function union(p, q).

/* Flatten set trees from all touched points */
For each point p in the 1-ring neighborhood of c do:

• Flatten p’s root-seeking path by calling find(p).

/* Put new roots into the hash table */
For each point p in the 1-ring neighborhood of c do:

• if p is root and p ̸∈ H, then push p into H.

End of union-find algorithm.

Table 4.3: Streaming union-find algorithm (Φ2)

Streaming operators Streaming states
Φ1: Read data from input point stream and allocate
memory.

s0: Unread

s1: Read
Φ2: Apply streaming union-find algorithm described
in Table 4.3.

s2: Segmented
Φ3: Write point records to output point stream, and
release them from memory. s3: Written and released

Table 4.4: Streaming operators and states for segmentation

Except the global hash table, this segmentation method is completely local, thus it

can be defined as streaming operators. A list of the streaming operators and correspond-

ing states are given in Table 4.4.

As a result, the output point stream is decomposed into segments of points. The

largest segment is taken as the ground patch and sent to the Ground Generator still in

the form of a point stream. The rest segments are sent to the building modeling module.
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Figure 4.5: With the principal direction grid on the Oakland data set, six principal direc-
tions are detected for the blue cell (left), while two principal directions are detected for
the orange cell (right).

4.3.4 Building Modeling

The building modeling algorithm now takes over these building patches. Since the num-

ber of points contained in a single building patch is small, the patches are loaded into

the memory and processed one by one. In the experiments, the largest building patch is

the large structure shown in Figure 4.6(a), containing 3.2M points, which takes 332MB

of memory to process.

This section extends the automatic building modeling algorithm in Section 3.4 for

building model reconstruction. Given a building patch and a set of principal directions

as input, the algorithm automatically fits planes to the points and snaps the plane bound-

ary segments onto the principal directions.
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Figure 4.6: Reconstructed urban model of Atlanta city. Closeups of different areas are
shown in the right sub-figures.

In Section 3.4.3, the principal directions are extracted over the entire input data,

which is problematic in city-scale input. To allow the principal directions to reflect

different boundary directions within local regions (such as the downtown area in the

city of Atlanta shown in Figure 4.6(b) and the residential area shown in Figure 4.6(d)), a

principal direction grid (Figure 4.5) is introduced. For each cell in this grid, a histogram

of the tangent directions of all boundary points is computed within a local neighborhood

and the peaks after Gaussian filtering are found to be principal directions.

4.3.5 Terrain Modeling

The objective of the terrain modeling algorithm is to rasterise the ground point stream

into a digital elevation model. Taking the point stream as input, the algorithm builds

up a square grid (whose user-selected unit length determines the precision of the ter-

rain mesh); and counts the lowest ground point in each grid cell. These points are later

accepted as vertices of the rasterised terrain model. The empty cells can be filled by solv-

ing a Laplace’s equation as proposed in Section 3.5. However, for performance reason,

a linear interpolation is applied to the gaps along each column on the grid. Trivial differ-

ences exist between results generated by these two methods; however, the improvement

on efficiency is remarkable for city-scale data sets.
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Figure 4.7: Memory usage during experiment on Atlanta data set

4.4 Experimental Results on City-Scale Data Sets

The streaming urban modeling system is tested on three different data sets, namely, Oak-

land, Denver, and Atlanta. The problem scale varies from 16M points to 683M points.

My program generates polygonal urban models for each of them. All the experiments

are done on a consumer-level desktop PC (Intel Core2 2.4GHz CPU, with 2G mem-

ory and 100GB free hard disk space). The running time and maximum memory usage

are reported in Table 4.5. Although the average performance is affected by the charac-

teristics of data sets, the average processing speed is faster than 3 minutes per million

points.

Benefiting from the streaming framework, the memory footprint during the experi-

ments is kept at a low level. The whole pipeline consumes no more than 1GB memory

at any time to process the largest data sets (Atlanta) in one pass. This memory-saving

mechanism can be explained by Figure 4.10, showing the Classifier module for Oak-

land data set. First, the finalization result in Figure 4.10(b) reveals the spatial coherence

between streaming grid cells. Second, three snapshots are taken during the streaming
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Model Oakland Denver Atlanta

Input LiDAR
data

Urban area
1.2km-by-

0.8km
4km-by-3km

5.5km-by-
7.1km

Point
number

16M 73M 683M

File size 437MB 1.90GB 17.7GB
Grid

resolution
64× 64× 64

512× 512×
512

512× 512×
512

Time
(hh:mm:ss)

Finalizer 24 4:43 34:58
Classifier 11:10 53:31 9:18:09
Splitter 3:14 2:03:56 11:54:29
Others 3:09 15:23 2:33:24
Total 17:57 3:17:33 24:21:00

Maximum
memory usage

(MB)

Finalizer 108 16 209
Classifier 276 156 888
Splitter 103 72 390
Others 23 71 332

Maximum 276 156 888

Output
triangles

Building 62K 182K 1.12M
Terrain 1.92M 10.7M 8.78M

Table 4.5: Three data sets with different sample rates are tested using the streaming
building reconstruction system on a consumer-level PC. This table reports the running
time and maximum memory usage in each pipeline module, namely, Finalizer, Classi-
fier, Splitter, and other components. The experimental results show the ability of the
streaming system to handle extremely large data sets in an efficient manner.

classification processing (Figure 4.10(c,d,e)), showing that only cells at active states

(bright solid colored cells) are stored in memory. The remaining cells are either waiting

in the input stream or have been written to the output stream and released from memory.

With the spatial coherence guaranteed, the active cells are always a small fraction of the

data; thus only small amount of memory is required.
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Figure 4.8: Urban model of Denver with three closeups shown in (a,b,c). Although
principal directions in these areas are different; with the principal direction grid, correct
principal directions are generated for each of them. (d) Memory usage during process-
ing.

Figure 4.6 and Figure 4.8 demonstrate the reconstruction results for Atlanta and Den-

ver respectively. The memory usage in the process of reconstructing the urban model

of Atlanta city is plotted in Figure 4.7. The Classifier is the most memory consuming

module because it has more active states, thus stores more cells in memory; the Split-

ter is the most time consuming module because of the overhead for saving segmented

patches into files. For the Denver data set, its urban model and closeups are shown in

Figure 4.8. Both data sets exhibit variation of principal directions across the whole city.

Nevertheless, it is nicely handled by the grid-based principal direction estimation.
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Streaming Tiling

Boundary artifactsClean result

Figure 4.9: Comparison between streaming method (left) and tiling method (right).
Even with padding along tile boundaries and tiles batch processed one-by-one using an
in-core modeling program (the blue square shown in the top-right sub-figure), artifacts
can be generated along tile boundaries as shown in the bottom.

4.4.1 Streaming Versus Tiling

This section makes a comparison between the streaming method and the traditional

tiling method [41, 48]. In particular, the tiling method is tested on Atlanta data set

following the partition setup described in [41], i.e., 0.6km × 0.6km tiles with 0.2km

padding at each edge. The tiling grid is shown in the top-right sub-figure of Figure 4.9,

with the blue square representing an in-processing tile with its padding. Each tile is

processed using the general urban modeling pipeline proposed in Section 3. Following

observations are made:
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1. Large building structures that are not fully captured by one single tile still exhibit

boundary artifacts. These building structures include the largest building shown

in Figure 4.6(a). Boundary artifacts are produced by the tiling method as shown

in the bottom-right sub-figure of Figure 4.9.

2. Tiling disables global segmentation. In some tiles, ground is segmented into sev-

eral pieces and some are incorrectly detected as building structures. E.g., with

ramps connecting highways and local roads not in the same tile, the highway is

often detected as an individual segment and reconstructed as a building; while

with the streaming approach highways are appropriately detected as part of the

ground.

3. Performance issue: with similar urban modeling technique, the tiling method runs

for over 60 hours mainly because of the additional overhead for padding areas

(with padding, the data size grows to roughly 3 times to the original size); and

requires user interaction (e.g., the user needs to specify which reconstructed build-

ing structure is desired when the same building appears partially in neighboring

tiles); while the streaming approach runs fully automatically for 24 hours on the

same computer.

Moreover, the streaming approach is especially useful under the current trend of

rapidly increasing data resolution. E.g., the Atlanta data set is with 17 samples/m2

resolution, compared with 1 sample/m2 data set in [41] and 9 samples/m2 data set in [60].
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Figure 4.10: (a) Reconstructed urban model of Oakland downtown area. (b) Finaliza-
tion result reveals the spatial coherence between cells; colors represent the finalization
time. (c,d,e) Three snapshots during the streaming classification algorithm; only a small
portion of cells are at active states (bright solid colored cells).
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Chapter 5

2.5D Dual Contouring

Figure 5.1: Various kinds of building models are created using 2.5D dual contouring.
From left to right: two stadium models with different kinds of non-planar roofs; a typical
flat building from residential area; and a modern high building from urban area.

This chapter focuses on the complicated problem of reconstructing building models

from aerial LiDAR point cloud. The aerial LiDAR point clouds are 2.5D data, i.e., the

LiDAR sensor captures the details of roof surfaces, but collects few points on building

walls connecting roof boundaries. In addition, manually created building models (Fig-

ure 5.2) also show a 2.5D characteristic. Nearly all of them consist of complex roofs

(green faces) connected by vertical walls (white faces). Thus, a 2.5D modeling method

with the following properties is desired:

• Accuracy: The method should produce simple polygonal models fitting the input

point clouds in a precise manner.

• Robustness: Regardless of the diversity and complexity of building roof shapes,

the method should always generate crack-free models, even with the existence of

undesired elements such as residual sensor noise and small roof features.
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Figure 5.2: Manually created models in Google 3D warehouse [21], showing the 2.5D
nature of building structure models

• 2.5D characteristic: The method should create 2.5D polygonal models composed

of detailed roofs and vertical walls connecting roof layers.

In Section 3.4.3, an automatic building reconstruction algorithm is developed based

on planar roofs. Its extension supports non-planar roofs with the help of user interac-

tions. However, both methods are limited by the pre-defined roof patterns, i.e., planes or

geometry patterns in a primitive library. Thus, they can hardly produce building models

with arbitrarily shaped roofs.

This limitation is also a common disadvantage in previous research work. E.g.,

[41, 48, 60] create planar building roofs and [33, 64, 65] rely on a small set of user-given

primitives. These methods work well for buildings composed of pre-defined shapes, but

lose accuracy and robustness when dealing with arbitrary roof shapes such as those

shown in Figure 5.1.

Another way to attack the building modeling problem is with traditional data-driven

approaches. Polygonal models are first generated directly from input data using ras-

terization or delaunay triangulation, then simplified with general mesh simplification

algorithms. The latter step significantly reduces triangle number while preserving a low

fitting error. However, since the general simplification algorithms are usually “blind”

to the 2.5D nature of the problem, they can hardly produce models satisfying the 2.5D

requirement.
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This chapter proposes a novel, data-driven approach to solve this problem, named

2.5D dual contouring. Like the classic dual contouring [31], an adaptive grid is adopted

as the supporting data structure. Geometry is reconstructed in each grid cell by min-

imizing the quadratic error functions known as QEFs. Model simplification is easily

achieved by merging grid cells and combining QEFs.

In order to represent the detailed roof surfaces, 2.5D dual contouring works in a 3D

space. However, unlike the classic 3D dual contouring, it uses a 2D grid as the sup-

porting data structure. The 2.5D dual contouring approach generates a hyper-point in

each grid cell, which contains a set of 3D points having the same x-y coordinates, but

different z values. They can be regarded as a set of points intersected by a vertical line

and multiple roof layers. Hence, the consistency between boundary footprints of differ-

ent roof layers is guaranteed, and vertical walls are produced by connecting neighboring

hyper-points together.

The following part of this chapter is organized as follows: Section 5.1 reviews the

classic dual contouring. Section 5.2 presents the 2.5D dual contouring pipeline, fol-

lowed by sections describing the details of each step. Finally, experimental results are

shown in Section 5.8.

5.1 Brief Review of Dual Contouring

Like many volumetric methods [10, 40], dual contouring [31] has proved to be a robust

way of generating crack-free 3D models: input points are first scan-converted into a

regularized grid; then geometry and topology are created respectively.
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In particular, the dual contouring method takes a 3D grid of Hermite data (in the form

of point-normal pairs) as input, and creates exactly one mesh vertex in each minimal grid

cell by optimizing a quadratic error function (QEF), defined as:

E(x) =
∑
i

(ni · (x− pi))
2, (5.1)

where (pi, ni) are the Hermite data samples in this cell. Since the error function is

defined based on both positions and normals at intersection points of the surface with

grid edges, the optimized vertices have a trend to lie on the sharp features such as roof

ridges and valleys. Based on this observation, Fiocco et al. [13] use classic 3D dual

contouring to create 3D building models from both aerial and ground-based LiDAR,

preserving sharp building features.

The geometry simplification in dual contouring is achieved in an adaptive manner.

Ju et al. [31] introduce an octree for 3D geometry simplification. They merge QEFs

associated with leaf nodes while collapsing the octree structure. The sub-tree collapsing

is controlled by the residual of the merged QEF, which is required to be less than a given

tolerance. Finally, dual contouring creates polygons during a traversal over the adaptive

grid. A topology safety examination is introduced to avoid possible topology changes

during simplification.

Nevertheless, the classic dual contouring approach is designed with regular 2D or

3D grids. It does not satisfy the 2.5D requirement for building models.

5.2 2.5D Dual Contouring Pipeline

Given a building point cloud as input, the 2.5D dual contouring modeling process exe-

cutes four steps as illustrated in Figure 5.3:
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(a) (b) (c) (d) (e)

Figure 5.3: Robust building modeling pipeline: (a) the input point cloud; (b) a 2D
grid with surface Hermite data (gold arrows) and boundary Hermite data (red arrows)
attached; (c) hyper-points (turquoise balls connected by red lines) generated by min-
imizing QEFs; (d) mesh model reconstructed via 2.5D dual contouring; and (e) final
model with boundaries snapped to principal directions.

1. Scan conversion: The point cloud is embedded in a uniform 2D grid. Surface

Hermite data samples (gold arrows) are generated at grid points and boundary

Hermite data samples (red arrows) are estimated on grid edges connecting differ-

ent roof layers (Figure 5.3(b)). This 2D grid is also regarded as the finest level of

the supporting quadtree.

2. Adaptive creation of geometry: In each quadtree cell, a hyper-point is estimated

by minimizing a 2.5D quadratic error function (2.5D QEF). Geometry simplifica-

tion is achieved in an adaptive manner by collapsing subtrees and adding QEFs

associated with leaf cells (Figure 5.3(c)).

3. Polygon generation: A watertight mesh model is created by connecting hyper-

points with surface polygons (turquoise triangles) and boundary polygons (pur-

ple triangles), which form building roofs and vertical walls, respectively (Fig-

ure 5.3(d)).
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4. Principal direction snapping: The roof boundaries are refined to follow the prin-

cipal directions defined in Section 3.4.3 and Section 4.3.4 (Figure 5.3(e)).

5.3 2.5D Scan Conversion

The first step of the 2.5D dual contouring algorithm converts the input point cloud into a

volumetric form, by sampling Hermite data (a point-normal pair) over a 2D supporting

grid. With elements being considered as their infinite extensions along the vertical direc-

tion, this 2D grid has a 3D volumetric connotation. E.g., a grid cell represents an infinite

three dimensional volume, while a grid point corresponds to a vertical line containing it.

5.3.1 Surface Hermite Data

Given a 2.5D point cloud as input, the scan conversion algorithm first segments it into

multiple roof layers using a local distance-based region growing algorithm1, as shown

in Figure 5.4(a). Ideally, each vertical line passing through a grid point intersects with

one and only one roof layer. The intersection point is taken as a surface Hermite data

sample, and estimated by averaging the heights and normals of its k-nearest input points

within the same roof layer, illustrated as points marked with blue or purple outlines

(taking k = 4) in Figure 5.4(a).

The only difficulty in this process is to robustly detect the right roof layer crossing

the vertical line. Intuitively, a roof layer L covers a grid point g iff each of g’s four

neighboring cells contains at least one input point p belonging to L or a higher cluster

L′. For example, in Figure 5.4(a), point A is covered by no roof layers, and thus is

assigned as ground; point B is only covered by and assigned to the dark-grey layer.

1The roof layers are always segmented in a local area, as global segmentation may erase local features
such as those shown in Figure 5.9(c). Specifically, the segmentation for grid point g is applied to all the
input points in g’s four neighboring cells.
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Points of a high roof layer

Points of a low roof layer

Surface samples assigned to the high roof layer

Surface samples assigned to the low roof layer

Surface samples assigned as ground

A B C

Boundary Hermite data samples

E F G H

Support vectors

(a) (b) (c)

Figure 5.4: Generating (a) surface Hermite data samples on grid points: the sample is
assigned to the highest roof layer which covers the grid point; (b,c) boundary Hermite
data samples on grid edges: the maximum margin line (thin black lines) divides the
lower surface Hermite data sample from the higher roof layer.

Note point C is covered by both the dark-grey layer and the light-grey layer. In this

case, the scan conversion algorithm takes the highest roof layer covering point C, i.e.,

the light-grey layer.

5.3.2 Boundary Hermite Data

While surface Hermite data captures the surface geometry of building roofs, the shapes

of roof boundaries are represented by the boundary Hermite data.

Considering a grid edge e connecting two grid points with surface Hermite data sam-

ples {s0, s1} on different roof layers s0 ∈ L0, s1 ∈ L1,2 the vertical wall connecting L0

and L1 should split their projection images on the x-y plane. Inspired by the 2D Support

Vector Machine algorithm [2], a maximum-margin line l is detected which separates L0

2To avoid ambiguity, roof layers are determined again by a local segmentation over {s0, s1} ∪ P ,
where P is the input point set within e’s two adjacent cells.
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and L1 on the x-y plane. The boundary sample is estimated by intersecting line l and

edge e.

In practice, with the existence of residual sensor noise, the projections of different

roof layers may overlap on the x-y plane. Since aerial LiDAR data is collected from a

top view, more saliency is given to the higher roof layer L1 (assuming height(L0) <

height(L1)). Thus the scan conversion algorithm takes the maximum-margin line l

which separates {s0} and L1 while maximizing distance(s0, l), shown as the thin black

lines in Figure 5.4(b,c). Empirically, this method is more robust than other methods

including that using a maximum-soft-margin line dividing L0 and L1.

5.4 Adaptive Creation of Geometry

Given a quadtree cell c (not necessarily being a finest-level leaf cell), the set of surface

Hermite data samples on the grid points in c is denoted as S, and the set of boundary

Hermite data samples on atomic grid edges in c is denoted as B. The roof layers in c

are then determined by segmenting S into k clusters S = S1 ∪ · · · ∪ Sk. Intuitively, if

an atomic grid edge in c has no boundary sample attached, it connects two surface sam-

ples of the same roof layer. Thus, an agglomerative clustering algorithm is adopted to

repeatedly combine surface sample sets connected by edges without boundary samples.

Now the task is to generate k vertices for the k roof layers, denoted as a hyper-

point χ = {x1, . . . , xk}. To maintain the consistency of roof layer boundaries, these

k vertices are required to have the same projection on the x-y plane, i.e., they should

have the same x-y coordinates, but different z values. Thus χ can be expressed as a

k + 2 dimensional vector χ = (x, y, z1, . . . , zk). Let x0 = (x, y, 0) for convenience in

following discussions.
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5.4.1 2.5D Quadratic Error Function

The hyper-point χ is optimized by minimizing a 2.5D quadratic error function (2.5D

QEF) defined as the linear combination of 2D boundary quadratic errors and 3D surface

quadratic errors:

E(χ) =
∑

(p,n)∈B

(ωn · (x0 − p))2 +
∑

i=1,...,k

∑
(p,n)∈Si

(n · (xi − p))2 (5.2)

where ω is a user-given weight balancing between boundary samples and surface sam-

ples. Empirically, a weight between 1 ∼ 4 satisfies most of the experiments.

Due to the horizontality of boundary sample normals, the third coordinates of p

and x0 do not affect the 2D error term. However, I choose to write all these variables

uniformly in 3D, in order to express the energy function in a matrix product form:

E(χ) = (Aχ− b)T (Aχ− b) (5.3)

where A is a matrix whose rows come from normals in B, S1, . . . , Sk, with those in B

multiplied by ω. The x-y values of each normal are placed in the first two columns, while

the z values of normals in Si are placed in the (i+ 2)-th column. The remaining entries

in A are padded with zeros. b is a vector composed of corresponding inner products n ·p

with the first |B| entries multiplied by ω.
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The numerical stability during QEF optimization can be improved by employing the

QR decomposition as proposed in [31]. I.e.,

(A b) = Q



Â b̂

0 r

0 0

. . . . . .


(5.4)

where Q is an orthogonal matrix and Equation 5.3 can be rewritten as:

E(χ) = (Aχ− b)TQQT (Aχ− b) = (Âχ− b̂)T (Âχ− b̂) + r2. (5.5)

Thus, E(χ) is minimized by solving Âχ− b̂ = 0. To handle the possible singularity

of Â, an SVD decomposition is applied, following solutions in previous methods [31,

37]:

Â = UΣV T . (5.6)

Small singular values in Σ with a magnitude of less than 0.1 is truncated, and the pseudo-

inverse Σ+ is adopted to compute the hyper-point χ as:

χ = χ̄+ V Σ+UT (b̂− Âχ̄) (5.7)

where χ̄ is a guessed solution whose first two coordinates come from the centroid of B,

and the (i+2)-th coordinate is the mean height of samples in Si. If B is empty, the first

two coordinates equal to those of the centroid of S.
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5.4.2 Quadtree Simplification with QEFs

Taking a quadtree with QEF matrices pre-computed for all the finest-level cells, the

geometry is simplified by collapsing leaf cells into parent cells and combining QEFs

in a bottom-up manner. A user-given tolerance δ controls the simplification level by

denying sub-tree collapse when the residual is greater than δ.

Combining four regular 3D QEFs can be simply achieved by merging the rows of

their upper triangular matrices to form a 16 × 4 matrix [31]. 2.5D QEF matrices are

combined in a similar way, yet with the consideration of association between matrix

columns and roof layers: as roof layers in leaf cells merge into one roof layer in the par-

ent cell, corresponding matrix columns are placed in the same column of the combined

matrix. Specifically, the roof layer is re-segmented in the parent cell before merging

matrices. Assuming the i-th roof layer in a leaf cell belongs to the j-th roof layer in the

parent cell, the (i+2)-th column of the leaf cell matrix is put into the (j+2)-th column

of the combined matrix. 0-columns are used to pad the leaf cell matrices where no roof

layers belong to certain roof layers in the parent cell.

Once again, the merged matrix is brought to the upper triangular form via a QR

decomposition. Due to the orthogonality of involved transformation matrices, it repre-

sents the 2.5D QEF in the parent cell.

Figure 5.5 shows a building model without and with geometry simplification. The

triangle number decreases from 820 to 252 with an insignificant increase of the fitting

error.
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Sum of squared distances = 33.53 Sum of squared distances = 53.22

Figure 5.5: 2.5D dual contouring without (left) and with (right) adaptive geometry sim-
plification

A

AA

A

Surface polygons

Boundary polygons

Relevant grid points

Relevant grid edges

(a) (b) (c) (d)

Figure 5.6: (a,b) Creating surface polygons (colored hollow polygons) and boundary
polygons (colored semitransparent polygons) around hyper-point A. Viewing from top,
(c) surface polygons are generated at grid points, while (d) boundary polygons are pro-
duced for grid edges which exhibit a roof layer gap.

5.5 Polygon Generation

Given the simplified quadtree with hyper-points estimated in each leaf cell, the next task

is to create polygons connecting these hyper-points into a mesh. In particular, two kinds

of polygons are generated to satisfy the 2.5D characteristic.

1. Surface polygons: At each grid point p, a surface polygon is created by con-

necting vertices in the hyper-points on the same roof layer as p in its neighboring

cells.
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2. Boundary polygons: At each minimal quadtree edge e, a boundary polygon is

generated connecting two hyper-point segments in the adjacent cells.

Figure 5.6 shows an example of polygon generation around a hyper-point A. The

surface polygons and boundary polygons are highlighted with colored outlines and col-

ored semitransparent polygons respectively. To avoid cracks generated within a hyper-

point, a boundary polygon sequentially passes through the vertices in a hyper-point seg-

ment in height ascending or descending order. E.g., the dark-blue boundary polygon in

Figure 5.6 goes through all the three vertices in hyper-point A, from the top vertex to

the bottom vertex.

This polygon generation method is guaranteed to produce crack-free models, which

can be derived from the fact that except for the border edges created around the entire

grid, the other mesh edges are contained by an even number of polygons. Proof is

straightforward: a non-vertical mesh edge is either contained by two surface polygons,

or by one surface polygon and one boundary polygon. As for the vertical mesh edges

created within a hyper-point, considering all the boundary polygons around this hyper-

point (e.g., the colored semitransparent polygons shown in Figure 5.6(a,b)): they go up

and down though this hyper-point and finally return to the start vertex, forming up a

closed edge loop. Thus, each vertical mesh edge in this hyper-point appears even times.

5.5.1 Sharp Feature Preserving Triangulation

By minimizing QEFs, 2.5D dual contouring has the ability to produce vertices lying on

sharp features, which are a common pattern in building roofs. However, a poor triangu-

lation of surface polygons can spoil this advantage, as shown in Figure 5.7 left. To solve

this problem, an efficient sharp feature detection algorithm is proposed to preserve these

features once detected.
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Figure 5.7: Triangulation without (left) and with (right) the sharp feature preserving
algorithm. The colors of input points represent the squared distances from the mesh.

In a grid cell c containing only one roof layer, covariance analysis is applied over

the normals of all surface samples, i.e., to get the eigenvalues of matrix:

C =
1

N

∑
i

ni · nT
i . (5.8)

Since c has no boundary Hermite data samples, Equation 5.4 and 5.6 can be used to

simplify this matrix as:

C =
1

N
ATA =

1

N
ÂT Â =

1

N
V ΣTΣV T . (5.9)

Thus, the diagonal of matrix 1
N
ΣTΣ gives the eigenvalues of C, while the columns

of V are corresponding eigenvectors. As Pauly [47] suggests, the smallest eigenvalue

λ0 and the middle eigenvalue λ1 estimate the minimal and maximal curvatures, as the

corresponding eigenvectors v0, v1 point to the curvature directions. Therefore, ridges

and valleys are detected by finding vertices with small λ0 and fairly large λ1. v0 is then

adopted as the feature direction. Since the involved matrices have all been computed in

previous steps, the additional overhead of this algorithm is trivial.
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Figure 5.8: Comparison between topology-unsafe simplification (left) and topology-
safe simplification (right). Undesired features can be created by merging leaf cells in a
topology-unsafe manner.

Specifically, for each diagonal e of a surface quad, the triangulation algorithm cal-

culates:

∑
p∈e and λ0(p)<τ

λ1(p) · |v0(p) · e| (5.10)

and chooses the diagonal e∗ which maximizes this value to split the quad into two trian-

gles. Here τ is a user given threshold. Empirically, τ = 0.01.

5.6 Topology-Safe Simplification

So far the quadtree simplification is completely built on QEFs, and the topology of

output models may change during this process. Undesired features can be generated as

shown in Figure 5.8 left. To solve this problem, an additional topology test is introduced

right before sub-tree collapse happens. It rejects collapse if there is a danger of topology

change. Regarding multiple roof layers as multiple materials, topology test algorithm

in [31] is extended with an additional test (step 3) which prevents different roof layers

in one leaf cell (top-left cell in Figure 5.9(a)) from merging into a same roof layer in

the coarse cell (Figure 5.9(b)). This situation may cause removal of small vertical wall

features (e.g., Figure 5.9(c)).
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Surface samples with different roof layer assignments
Surface polygons Boundary polygons

(a) (b) (c)

Boundary samples exhibiting roof layer gaps

Figure 5.9: An unsafe simplification case denied by the topology safety test step 3.
Since the center grid point has different roof layer assignments in these leaf cells, two
different layers in the top-left leaf cell (a) belong to the same roof layer in the coarse
cell (b). Unsafe merging may erase wall features such as the one shown in (c).

1. Test whether each leaf cell creates a manifold; if not, stop.

2. Test whether the coarse cell creates a manifold; if not, stop.

3. Test whether any two roof layers in a same leaf cell belong to two different roof

layers in the coarse cell; if not, stop.

4. Test whether the topology of the dual contour is preserved using following criteria;

if not, stop; otherwise, collapse.

(a) Test whether the roof layer on the middle point of each coarse edge agrees

with the roof layer on at least one of the two edge endpoints.

(b) Test whether the roof layer on the middle point of the coarse cell agrees with

the roof layer on at least one of the four cell corners.
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Principal

directions

Figure 5.10: Roof layer boundaries (thick colored lines) are regularized using principal
direction snapping algorithm.

5.7 Principal Direction Snapping

The 2.5D dual contouring algorithm is completely data-driven, i.e., no pre-assumptions

about the roof shapes have been made. Thus this algorithm can handle complex roofs

in a robust manner. On the other hand, in some cases, prior knowledge of the urban

area is given and it is a desire to have building models concurring with such knowledge.

This section shows a post-processing refinement to the modeling results using the prior

knowledge of principal directions as detected in Section 3.4.3 and Section 4.3.4.

The idea is straightforward: once the boundaries of individual roof layers are

extracted, they can be snapped to the principal directions as much as possible without

exceeding a small error tolerance. In order to maintain the consistency between bound-

aries of different layers, the boundaries are handled one by one in height-descending

order. I.e., when a roof layer boundary has been processed, the x-y coordinates of

the touched hyper-points are fixed, which are then considered as constraints during the

subsequent processing of lower roof layers. Figure 5.10 shows clean and simple roof

boundaries generated by the principal direction refinement.

73



5.8 Experimental Results of 2.5D Dual Contouring

Figure 5.11 shows an urban area of Los Angeles reconstructed from 26M LiDAR points

with 7 samples/m2 resolution. The streaming urban modeling system presented in Chap-

ter 4 is first adopted to remove irrelevant parts such as noises, trees, vehicles and even

ground. The 2.5D dual contouring algorithm is then tested on point clouds of individ-

ual buildings. This algorithm successfully creates 1,879 building models consisting of

857K triangles within 6 minutes on a consumer-level laptop (Intel Core 2 1.8GHz CPU

with 2GB memory). 2.5D building models with complex roofs are robustly generated

in the entire area.

To further demonstrate the ability of handling various kinds of building models, the

2.5D dual contouring method is tested on a set of buildings from the city of Atlanta,

as illustrated in Figure 5.1. Figure 5.12 shows a comparison between this method and

the state-of-the-arts. In particular, I compare the average squared distance from input

point sets to the generated models, and the ratio of points with squared distances greater

than 1m2 In Figure 5.12, point colors denote the squared distances, and the colored bars

show the percentage of points at different squared distance levels. As the quantitative

results in Table 5.1 illustrate, the 2.5D dual contouring method (first column) is the most

accurate algorithm to produce 2.5D models. Plane-based approaches such as the one in

Section 3.4.3 (second column) are unable to handle non-flat roofs (a,d) and small roof

features (b,e). Cracks often exist when fitting is unsuccessful (c,d). A general mesh

simplification over the DEM (third column) is competitive in the sense of fitting qual-

ity. However, it cannot produce 2.5D models composed of roofs and vertical walls. In

addition, the fitting quality on roof boundaries is unsatisfactory (f,g,h). The last column

demonstrates point clouds aligning with manually created models. Designed without

knowledge from real-world data, they often lack of accuracy even after registration to

the input points.
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Figure 5.11: Building reconstruction for a 2KM-by-2.5KM urban area of Los Angeles

Figure 5.13 finally demonstrates the influence of grid configuration. As an adaptive

approach, 2.5D dual contouring is insensitive to the grid size (top row). In addition,

it has the ability to place vertices at optimal positions, thus grid orientation affects the

results insignificantly (bottom row).
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Figure 5.12: Building models created using different approaches (from left to right):
2.5D dual contouring, plane-based method proposed in Section 3.4.3, general mesh sim-
plification over a rasterized DEM, and manual creation. Point colors denote the squared
distances between points and generated models. Color bars under the models show the
ratio of points at different squared distance level.

l = 0.7 m l = 1.0 m l = 1.4 m

Tri. # = 835 Err avg = 0.009 Tri. # = 688 Err avg = 0.010 Tri. # = 584 Err avg = 0.016

Tri. # = 688 Err avg = 0.010 Tri. # = 878 Err avg = 0.016 Tri. # = 937 Err avg = 0.024

θ = 0
o

θ = 30
o

θ = 45
o

Default grid configuration:

Grid size: l = 1.0 m

Grid orientation: θ = 0
o

Tri. # = 688 Err avg = 0.010

Figure 5.13: Models of similar quality are generated with the same point cloud embed-
ded into grids of different sizes or different orientations.
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Models in Figure 5.12 2.5D dual
contouring

Plane-
based

method

DEM sim-
plification

Manual
creation

[21]

First row
(4679 points)

Triangle number 214 76 198 78
Avg. distance2 0.016 0.599 0.061 0.058

Outlier ratio 0.06% 12.37% 0.53% 0.83%

Second row
(684907 points)

Triangle number 8009 6262 8000 1227
Avg. distance2 0.037 0.465 0.035 7.780

Outlier ratio 0.44% 7.93% 0.87% 70.38%

Third row
(198551 points)

Triangle number 12688 1619 12999 1558
Avg. distance2 0.203 1.610 0.264 16.220

Outlier ratio 2.03% 21.15% 3.08% 68.28%

Table 5.1: Quantitative evaluation of four modeling approaches over models shown in
Figure 5.12
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Chapter 6

2.5D Building Topology

This chapter studies 2.5D building topology, and extends 2.5D dual contouring into a

2.5D building modeling method with topology control.

The major contribution of this chapter is based on the observation that human vision

tend to be more sensitive to building topology rather than building geometry. Intu-

itively, building topology determines the existence of structural pieces and the connec-

tions between them; while building geometry describes where these structural pieces

appear in the three dimensional space. Humans tend to be more aware of changes in

topology even if the related structural pieces are small. For example, Figure 6.1(c,d)

demonstrate two building models created targeting to achieve more precise geometry

and more precise topology respectively. Although the left model fits the input point

cloud better under typical geometrical error measurements (e.g., average quadratic dis-

tance), it is visually less convincing than the right one because a roof piece (the chimney)

is missing.

In 2.5D dual contouring, the topology issue is alleviated by introducing a topology

test presented in Section 5.6. The adaptive simplification process first collapses quadtree

cells and optimizes an anchor point completely based on geometric errors without con-

sidering building topology; then rewinds the collapse operation if the topology test

reveals a possible topology change. This strategy performs well under strong geometric

control (i.e., with a small geometry error tolerance). However, in cases where simpler

models are desired thus looser geometric control is given, the number of topology test

failures increases rapidly and they become the dominant factor in preventing quadtree
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(a) Input LiDAR

(c) Geometrically more precise (d) Topologically more precise

(b) Unsimplified model

Figure 6.1: Building models reconstructed targeting to obtain (c) more precise geometry
and (d) more precise topology respectively. Compared with (a) the input LiDAR and (b)
unsimplified building model, the missing of the chimney makes the former one visually
less convincing than the latter one.

collapse. Figure 6.2(a) shows such an example in which topology test frequently detects

possible roof layer cracks and denies the cell collapse; therefore, numerous insignificant

triangles are produced along the thin long roof features as shown in the closeup. The

deep reason behind this problem is that the optimization process is completely unaware

of building topology. It produces exact one hyper-point1 per quadtree cell without dis-

crimination. Hence, the most complicated topological structure that can exist in one cell

is a conjunction hyper-point with star-shaped roof boundaries, as shown in Figure 6.2(a)

bottom right. The adaptive simplification becomes problematic in producing building

1A hyper-point is defined as a series of 3D points having the same x-y coordinates but different z
values, see Chapter 5.
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(a) 2.5D dual contouring (b) 2.5D contouring with topology control

Denied Accepted

Invoke
rewind

Figure 6.2: Comparison between (a) 2.5D dual contouring and (b) 2.5D building mod-
eling with topology control. While the uniqueness of hyper-point in one cell prevents a
flexible simplification in dual contouring, the new method detects and controls building
topology beyond the rigid quadtree structure.

structures with topology that is more complex than a conjunction hyper-point. Collapse

rewind is invoked frequently.

This chapter proposes an extension to the 2.5D dual contouring method to enable

building topology control. The key idea is to maintain multiple hyper-points in one

quadtree cell. Therefore complicated in-cell building topology is allowed. With this

extension, the adaptive model creation procedure becomes less restrictive, and thus gen-

erates simpler building models in a flexible manner, e.g., Figure 6.2(b). In particular,

without changing building topology, the modeling method can produce building mod-

els with triangles as few as manually created models or primitive-based models; while

it still provides a similar geometric optimization scheme as the data-driven modeling

approaches.
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Section 6.1 reviews topology control approaches in volumetric modeling. Sec-

tion 6.2 formally defines 2.5D building topology which is the basis of this chapter.

Section 6.3 then extends 2.5D dual contouring into a building modeling method with

topology control. Experimental results are shown in Section 6.4.

6.1 Review of Topology Control in Volumetric Modeling

In classic 2D and 3D volumetric modeling methods, the topology issue is first noticed

by Ju et al. [31]. They propose a topology test mechanism to reject simplification opera-

tions yielding possible topology changes. This mechanism is later extended to the 2.5D

dual contouring method as discussed in Section 5.6.

The drawback of creating one vertex per octree/quadtree cell is noticed by

researchers and different approaches have been proposed to solve this problem, e.g.,

[51, 59, 66]. Generally, they all allow one grid cell to have more than one vertices, in

order to track contour components which are topologically more complicated than a disk

(or in 2D, a line segment) in each cell. Although these methods share some similarities

with the approach presented in this chapter, two key differences are noted: first, this

research aims at 2.5D building modeling involving hyper-points that cannot be handled

in classic 2D or 3D manner; second, various building topology features are defined and

processed which are more complicated than disk-like features in classic 2D or 3D space.

6.2 2.5D Building Topology

Considering a 2.5D dual contouring process without adaptive simplification: taking

aerial LiDAR data as input, the contouring method builds up a uniform grid with Her-

mite data attached; creates one hyper-point (a series of points that are consistent on

the x-y plane) in each cell by optimizing a quadratic error function; generates surface
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Figure 6.3: Topological features in an unsimplified 2.5D building model

polygons and vertical boundary polygons; and produces an unsimplified 2.5D building

model such as the one shown in Figure 6.3 left.

6.2.1 Topological Feature Definitions

The first observation about 2.5D building topology is that a typical building structural

piece (e.g., a chimney) is usually composed of one unique roof patch and its surrounding

walls. Hence,

Definition 6.1 A roof feature R is a connected component composed of non-vertical

surface polygons.

Roof features are the key in determining 2.5D building structures. Figure 6.3 utilizes

green mesh pieces rendered with different color intensities to represent multiple roof

features. In particular, neighboring roof patches exhibit a height gap along their common

boundary, which is sealed up by vertical boundary polygons (grey vertical polygons).

These polygons form wall features that are marked in Figure 6.3 by curves with various

colors.
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Figure 6.4: 2.5D building models may contain point features involving only one wall
feature (left). These points are produced around grid edges (e.g., AB) which detect
inconsistent roof layer assignments in two adjacent cells (right).

Definition 6.2 Given two roof features R1 and R2, the corresponding wall feature

W is defined as the connected component composed of vertical boundary polygons

adjacent to R1 and R2 simultaneously. W intersects with R1 and R2 via non-identical

roof boundary polylines.

Here a slight modification is made to 2.5D dual contouring, that the triangulation

is disabled. Instead, surface polygons are treated as quads connecting all four vertices

around a grid corner, while boundary polygons are produced with two non-vertical edges

linking a pair of neighboring hyper-points. Therefore, a vertical boundary polygon is

“adjacent” to a roof feature as long as they share a non-vertical edge. By tracking the

consecutive non-vertical edges, one roof boundary polyline is created regarding each

adjacent wall-roof feature pair (W,Ri), i = 1, 2, denoted as bi = W ∩ Ri, i = 1, 2.

According to definition 6.2, W is a valid feature when b1 and b2 are not identical, even

if R1 and R2 refer to the same roof patch.

Definition 6.3 Given a wall feature W sharing two consecutive roof boundary polylines

b1 and b2 with R1 and R2 respectively, point features are defined as hyper-points which

contain b1 and b2’s end points if there is any.

83



Typically, a hyper-point shared by two neighboring wall features is a point feature.

They are rendered in Figure 6.3 as golden balls connected by vertical lines. Note that

definition 6.3 supports these common hyper-points shared by neighboring wall features;

but is not limited to them. In a special case shown in Figure 6.4, the corner points

of grid edge AB have the same roof layer assignment in one adjacent cell (right cell)

but different assignments in another (left cell). Thus, a vertical boundary polygon is

produced to reflect this significant topology feature. Specifically, R1 and R2 denote the

same roof patch, which is adjacent with W along b1 and b2 representing the upper roof

boundary polyline and the bottom roof boundary polyline respectively. Since b1 and b2

are non-identical, W is a valid wall feature. Point feature F acts as a “folding point”

which connects b1 and b2 together and folds up the boundary of W .

6.2.2 Connections between Topological Features

By projecting the 2.5D building model onto the x-y plane, the building topology can

be viewed with a 2D cell complex representation2. In particular, roof features, wall

features, and point features are projected onto the 2D x-y plane as 2-cells (regions), 1-

cells (polylines), and 0-cells (points) respectively. High dimensional cells are always

bounded by a set of low dimensional cells.

Given a projection operator P(·) which projects a set of 2.5D objects onto the x-y

plane and a boundary extraction operator ∂(·), the connections between roof feature set

R, wall feature set W , and point feature set P are revealed with following equations:

P(∂R) ⊆ P(W), for any R ∈ R, (6.1)

∂P(W ) ⊆ P(P), for any W ∈ W . (6.2)

2Cell complexes are the basic concepts in algebraic topology, see [23] for detailed discussion.
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Figure 6.5: 2.5D building topology is represented by topological features, and the asso-
ciations between them in form of Equation (6.1) and (6.2). Examples include typical
building structures such as (a) individual building blocks, (b) blocks with top attach-
ments, (c) blocks with side attachments, (d) stair-shaped structures, and (e) combina-
tions of these patterns.

These equations can be straightforwardly derived from the definitions of roof, wall,

and point features. On the other hand, once topological features and their associations

expressed in form of Equation (6.1) and (6.2) are fixed, the 2.5D building topology is

determined accordingly.

Figure 6.5 demonstrates typical building structures including standing-alone build-

ing blocks, vertically attached blocks, horizontally attached blocks, stair shapes, and the

combinations of these patterns. Nevertheless, the 2.5D building topology representation

describes them in a deterministic and differentiable manner.
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In addition, the difference between 2.5D topology representation and classic 2D

topology representation is noted as follows. The latter one can be achieved by project-

ing all building elements onto the x-y plane at first, and treating different roof layers

as multiple region materials. This representation, however, is problematic in handling

wall features connecting the gap within one roof layer (e.g., W1 in Figure 6.5(d)). It

eliminates such wall features together with the folding point (e.g., P0). In contrast, the

topology representation presented in this section faithfully preserves all significant 2.5D

topology features which are the basis of the topology control method 3.

6.3 Contouring with Topology Control

So far the 2.5D topological features are formally defined and the associations between

them are well explored. These mechanisms can be naturally expanded from a uniform

grid to a quadtree. Thus, the quadtree-based simplification of 2.5D dual contouring can

be extended with a topology control method to maintain the 2.5D building topology.

6.3.1 Hyper-Points Clustering

The core of the simplification algorithm is to optimize the geometry of hyper-points

based on a 2.5D quadratic error function (see Section 5.4). These hyper-points can be

categorized by the number of their layers.

1. 1-layer points: A hyper-point containing one vertex is optimized targeting the

disk-like geometry in a grid cell. In most cases, it is connected to vertices created

in its neighboring cells only by surface polygons. Such a hyper-point is an inner

3This problem can also be regarded as the result of changing the order in applying boundary extraction
operator and projection operator. As 2D topology representation projects all elements onto the x-y plane
at first, it attempts to replace P(∂R) in Equation (6.1) with ∂P(R). This attempt is problematic because
∂P(R) ̸≡ P(∂R) as P(·) can absorb wall features such as W1 in Figure 6.5(d).
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vertex of a roof feature. Thus it can be safely merged into a neighboring vertex

without changing the 2.5D building topology. The accepting vertex can be either

another 1-layer point or one vertex in a hyper-point with more than one layers.

The only exception is a 1-layer folding point, which is connected to two different

layers of a neighboring hyper-point by a boundary polygon, as shown in Figure 6.4

and Figure 6.6 left. In this case the 1-layer point is a point feature, thus should not

be merged into other points.

2. 2-layer points: A hyper-point containing two layers is a typical roof boundary

anchor point, which is optimized with surface geometry and boundary geometry

simultaneously. Typically, it is an inner element of a wall feature, thus can be

merged into another hyper-point that is connected to it by a vertical boundary

polygon. The accepting hyper-point can be either another typical 2-layer point

or a multi-layer point. Similar to 1-layer points, folding points can exist within

2-layer points. Figure 6.6 middle shows such an example where the 2-layer point

is a point feature. It cannot be merged in typical manner.

3. Multi-layer points: A hyper-point with more than two layers can be regarded as

a conjunction point of more than two regions, if the problem is viewed on the 2D

projection plane where roof patches are treated as regions with different materials.

I find that any multi-layer point is a point feature. Proof is straightforward as they

cannot be the inner elements of wall features; thus always stand at boundaries of

wall features’ 2D projections. Therefore, multi-layer points can only accept 1-

layer points and 2-layer points joining it, but cannot be merged with other point

features.
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Figure 6.6: Folding points can be part of a 1-layer hyper-point, a 2-layer hyper-point,
or a multi-layer hyper-point (from left to right). They are detected and marked as point
features before adaptive simplification starts.

Since folding points can exist in 1-layer points, 2-layer points, and multi-layer

points, as demonstrated in Figure 6.6, they are detected and marked as point features dur-

ing pre-processing. The detection algorithm is implemented by uncovering grid edges

with inconsistent roof layer assignments in adjacent cells.

Apart from folding points, typical 1-layer points, typical 2-layer points, and multi-

layer points are denoted as p1, p2, and pm respectively. A set of hyper-point clustering

operations are introduced to merge components connected by surface polygons, denoted

as Φ1→1
S , Φ1→2

S , and Φ1→m
S , with following functions:

Φ1→1
S : {p11, p12, . . . , p1n} ⇒ p1∗, (6.3)

Φ1→2
S : {p11, p12, . . . , p1n}, p2 ⇒ p2∗, (6.4)

Φ1→m
S : {p11, p12, . . . , p1n}, pm ⇒ pm∗. (6.5)

Each operation merges a connected component within a roof feature, and produces one

hyper-point (e.g., p1∗, p2∗, or pm∗) per cluster. In particular, the geometric coordinates

of output hyper-points are obtained by optimizing a 2.5D QEF matrix which is the com-

bination of QEF matrices from input hyper-points. The third column from p1i ’s matrices
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are placed with corresponding matrix column from p2 or pm. Details of QEF matrices

combination can refer to Section 5.4.2. Similarly, the clustering operations for compo-

nents that are connected by vertical boundary polygons are:

Φ2→2
B : {p21, p22, . . . , p2n} ⇒ p2∗, (6.6)

Φ2→m
B : {p21, p22, . . . , p2n}, pm ⇒ pm∗. (6.7)

These operations merge connected components within a wall feature.

6.3.2 Handling Degenerate Cases

Although these clustering operations aim at simplifying continuous roof and boundary

features, they risk in making topological features degenerate. For example, with intense

geometry simplification, the building structure in Figure 6.5(a) may degenerate into a

single vertical line with its top vertex collapsed from R0.

To address this problem, degenerate tests are adopted after each clustering opera-

tion. Given f(C) and e(C) as the number of faces and edges in a cell complex C, the

following requirements must be satisfied:

f(R) ≥ 1, for any R ∈ R, (6.8)

e(P(W )) ≥ 1, for any W ∈ W . (6.9)

Initially, these two criteria are fulfilled due to Definition 6.1 and 6.2. In adaptive sim-

plification phase, for each possible hyper-point clustering operation, a degenerate test is

applied to all the modified roof features and wall features, to check if these two criteria

are still satisfied. If any of them is violated, the clustering operation is rewound.
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In practice, I found this degenerate test inefficient because it involves polygon recre-

ation and topological feature detection after every clustering operation. Thus an equiv-

alent criterion is proposed to replace the former two, which is much easier to be imple-

mented:

Degenerate test A hyper-point clustering operation passes the degenerate test if the

following criterion stays true:

e(∂P(R)) ≥ 3, for any R ∈ R. (6.10)

The equivalence between this degenerate test and the one based on Equation (6.8)

and (6.9) is proved in the Appendix of this chapter.

Since the degenerate test is irrelevant to typical 1-layer points, clustering opera-

tions based on surface components are always allowed (i.e., Φ1→1
S , Φ1→2

S , Φ1→m
S ). For

clustering among 2-layer points and multi-layer points, the simplification algorithm pre-

computes boundaries of roof feature projections, i.e., ∂P(R), and keeps tracking of the

edge numbers e(∂P(R)) during the complete simplification process. Boundary com-

ponent clustering operations (i.e., Φ2→2
B and Φ2→2

B ) decrease the corresponding edge

numbers. Once a boundary edge number is less than 3, the latest operation is rewound.

6.3.3 Adaptive Contouring

2.5D dual contouring is extended by allowing multiple hyper-points in each grid cell of

the quadtree Q. In addition to the adaptive structure of quadtree, a hyper-point forest is

maintained to allow topology-preserving clustering operations which are detailed in pre-

vious sections. As illustrated in Figure 6.7, trees in the forest are connected components

that can be simplified via a series of clustering operations, and each of them is finally
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Figure 6.7: Hyper-point cluster forest viewed from oblique and orthogonal perspectives

represented by its root (blue and gold hyper-points) whose coordinates are determined

by optimizing a 2.5D QEF combining geometric information from leaf points.

This hyper-point cluster forest is built in a bottom-up manner. In a quadtree cell c

composed of four leaf cells c0,0, c0,1, c1,0, c1,1, assume each leaf cell has a set of cluster

roots that are available for further clustering (i.e., without exceeding the geometry error

tolerance or violating degenerate test). The simplification algorithm first traverses all

the corner points in c that are shared by two of the four leaf cells. At each grid corner,

four vertices in adjacent cells are connected via a surface polygon. The simplification

algorithm retrieves the roots of these vertices and detects possible clustering operations

based on surface component, i.e., Φ1→1
S , Φ1→2

S , or Φ1→m
S . Similar approaches can be

applied to minimal grid edges which exhibit roof layer gaps. They imply boundary-

neighborships leading to possible operations Φ2→2
B and Φ2→m

B .

With possible clustering operation detected, they are sequentially tested against the

geometry error tolerance and the degenerate test. Since the test sequence may affect

the modeling quality, each clustering operation is assigned with a priority. In particular,

high priority is assigned to Φ1→1
S and Φ2→2

B ; medium priority is assigned to Φ1→2
S and

Φ1→m
S ; and low priority is assigned to Φ2→m

B . The reason behind this priority assignment
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is that 1-hyper points and 2-hyper points are expected to be first clustered together to

form meaningful geometric patterns (e.g., roof ridges and straight vertical walls), before

they are merged into key features with higher dimensional topology. As for cluster-

ing operations with same priority, the test sequence is determined by the addition to

quadratic errors in ascending order.

Polygon generation of 2.5D dual contouring is adapted to the hyper-point cluster

forest in a straightforward manner. Considering the unsimplified polygonal model cre-

ated from the uniform grid, each point in the model is replaced by the root of its cluster

(or the corresponding portion of the root if that has more layers than the leaf point).

Numerous polygons become degenerate and are removed automatically, e.g., a triangle

whose three vertices belong to the same cluster and thus map to the same root point. A

simple polygonal model with small amount of triangles is produced which has the same

2.5D building topology as the unsimplified model.

6.4 Experimental Results

Figure 6.8 shows a stadium model reconstructed using different approaches, namely,

2.5D dual contouring (a,b), the modeling method presented in this chapter (c,d), manual

creation (e), and the plane-based method presented in Section 3.4. In particular, the

geometry error tolerance δ is varied in order to make trade-offs between model scale and

fitting quality. The relation curve between δ and the number of triangles produced by

different approaches is illustrated in Figure 6.8(g). Quantitative measurements are given

in Table 6.1. With error tolerance δ increasing, the new method constantly decreases the

triangle number of reconstructed models. Reasonable cost is paid in fitting quality as

the trade-off. On the contrary, 2.5D dual contouring reaches the simplification barrier

around 3,000 triangles. This barrier can be explained by the last column of Table 6.1,
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Figure 6.8: A stadium model created using (a,b) 2.5D dual contouring, (c,d) the mod-
eling method presented in this chapter, (e) manual creation, and (f) the plane-based
approach in Section 3.4. The relation curve between error tolerance and the triangle
number of reconstructed models is illustrated in (g). With larger geometry error tol-
erance given, the new method can always produce simpler models with less triangles;
while the overstrict topology test in 2.5D dual contouring creates numerous trivial trian-
gles along thin roof features shown in closeups of (a,b).

...
δ

1.0 2.0 4.0 8.0 ∞

Tri. # = 169 Tri. # = 113 Tri. # = 80 Tri. # = 63 Tri. # = 52

...

Figure 6.9: Model evolution with error tolerance growing from 1.0 to infinite

showing the percentage of unsuccessful collapses caused by topology test among all

unsuccessful collapses. Many of them happen in small cells that create trivial triangles

as shown in Figure 6.8(a,b) closeups.

Figure 6.10 shows the building reconstruction for a 5km-by-7km urban area of Den-

ver, from 73M input aerial LiDAR points with 6 samples/sq.m. resolution. The urban

modeling pipeline in Section 4 is adopted to extract individual building patches, and
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test the modeling method with topology control, 2.5D dual contouring, and a plane-

based method independently. A fairly large error tolerance is utilized for both the new

method and 2.5D dual contouring. The new modeling method successfully reconstructs

2,099 2.5D building models within 5 minutes on a consumer level laptop (Intel i-7 CPU

1.60GHz with 6GB memory). 227,566 triangles are produced for the building models

which are rendered in the top rows of Figure 6.10. The output triangle number is com-

parable to plane-based results (181,752 triangles rendered in the bottom row). However,

unlike the plane-based method, the modeling approach presented in this chapter detects

and preserves 2.5D building topology, thus avoids producing cracks and inconsistencies

between building blocks. E.g., the roof of the large structure shown in the bottom left

closeup intersects with small features on top of it; while the new method does not have

such problem. The middle row of Figure 6.10 shows 2.5D dual contouring result, it

produces twice as many triangles (551,341 triangles) as the other two approaches.

Since the scale of the result is inversely proportional to geometry error tolerance δ.

It is beneficial to study the evolution of building model with respect to δ. In particu-

lar, 2.5D building models are created for the same LiDAR point cloud using an expo-

nentially increasing δ, shown in Figure 6.9. Although the model geometry constantly

becomes simpler, the building topology is faithfully preserved. Even in the extreme

simplification case where δ = ∞, a model with 32 vertices and 52 triangles is cre-

ated, which contains the smallest amount of vertices and triangles that can represent the

building topology of this model.

6.5 Appendix

Proof of equivalence between (6.8)+(6.9) and (6.10):

First, all three equations stand true in the initial unsimplified model.
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Geometry
error

tolerance

The new method 2.5D dual contouring

Triangle #
Avg.

distance2
Triangle #

Avg.
distance2

Topology test
failure rate

δ = 0.25 24161 0.0157 26776 0.0156
3.02% (82 out of

2713)

δ = 1.00 8864 0.0202 11280 0.0182
11.83% (109 out

of 921)

δ = 4.00 3290 0.0849 5191 0.0316
39.10% (149 out

of 381)

δ = 16.00 1374 0.1259 3644 0.0988
76.30% (161 out

of 211)

δ = 64.00 766 0.4812 3315 0.2104
90.45% (161 out

of 178)

Table 6.1: Quantitative comparison between modeling with topology control and 2.5D
dual contouring using the experiment shown in Figure 6.8. The last column reports the
percentage of cell collapses rejected by topology test among all rejected collapses. The
topology test becomes dominant in 2.5D dual contouring with large error tolerance.

After a clustering operation, if both equation (6.8) and (6.9) are true, for each R ∈ R,

there is f(P(R)) = f(R) ≥ 1. I.e., P(R) contains at least one 2-cell. Thus, the boundary

of P(R) contains at least 3 edges, e(∂P(R)) ≥ 3.

Conversely, when Equation (6.10) is true, P(R) has at least one 2-cell. Therefore,

f(R) = f(P(R)) ≥ 1, i.e., (6.8). As for a wall feature W with |∂P(W )| ≥ 2, it is

bounded by two point features, and (6.9) is true by definitions of hyper-point clustering

operations. Now considering a wall feature W with |∂P(W )| ≤ 1 (e.g., W0 in Fig-

ure 6.5(d) and W1 in Figure 6.5(b)), P(W ) is a close loop on 2D space. It divides R into

partition Rin and Rout, where Rin ̸= ∅. Therefore:

P(W ) = ∂
∑

R∈Rin

P(R). (6.11)

Since the right part sums at least one 2-cell before boundary extraction, the boundary of

the cell complex contains at least 3 edges, i.e., e(P(W )) ≥ 3. �
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Figure 6.10: 2,099 building models are created for an urban area in Denver using (top)
building modeling with topology control, (middle) 2.5D dual contouring, and (bottom)
plane-based method. The new method produces as few triangles as the plane-based
method while recovering and preserving the topological features in each building struc-
ture.
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Chapter 7

2.5D Building Modeling by Discovering

Global Regularities

Besides data-driven building modeling approaches such as those proposed in Chap-

ter 5 and Chapter 6, another popular strategy in attacking the 2.5D building modeling

problem is to introduce primitives (e.g., planes, spheres, cones) to represent building

shapes. In particular, planes receive the most attention since they are the common-

est structures in man-made objects, especially in buildings. Planar roof patches are

locally fitted from raw points, and are later combined with vertical facades aligning

with roof boundaries, to construct a compact mesh model while maintaining low geo-

metric fitting error rate. The main difficulty of this strategy is that local plane fitting

can become unstable when dealing with noisy or incomplete point clouds. Artifacts are

inevitably created from unreliable plane primitives. To alleviate this problem, existing

methods typically introduce strong urban priors to prune the fitted planes, such as roof

topology [60], Manhattan-world grammars [41, 48], and principal directions introduced

in Section 3.4.3 and Section 4.3.4. While prior knowledge successfully increases the

robustness of these methods, it tends to be overstrict and thus limits their applicability

when dealing with moderately complex building structures such as the one shown in

Figure 7.1.

This chapter proposes global regularities, a moderate yet informative structure to

organize planar roof patches and roof boundary segments. As illustrated in Figure 7.1

bottom, I explore both orientation and placement regularities between planar roof patch
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Figure 7.1: The method presented in this chapter automatically discovers global regular-
ities from a noisy 2.5D point cloud, and uses them to create a convincing 2.5D building
model. Two orthogonal projections illustrate a subset of the global regularities in this
model (lengths in meters).

pairs (e.g., slope angle equality), between roof boundary segment pairs (e.g., segment

height equality), and between a planar roof patch and its boundary segments (e.g.,

orthogonality between their orientations). These global regularity patterns reveal the

inter-element similarities and relations that intrinsically exist in building models because

of human design and construction. With these patterns, the complexity of the building

modeling problem can be significantly reduced for complicated building models such as

the one in Figure 7.1.
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This chapter presents an automatic algorithm which detects global regularities and

utilizes them to calibrate plane primitives. Unlike the strong priors introduced by previ-

ous methods, global regularities offer a more flexible representation of the global knowl-

edge in 2.5D building models, and thus enable the modeling algorithm to handle more

complicated building shapes.

Another significant advantage of global regularities is that they characterize the

intrinsic structures of building models, to which human vision is sensitive. For instance,

Figure 7.2 right shows two models created from plane primitives. Without comparing

model geometry with input points, human vision immediately finds the top-right model

more convincing since it conforms to more global regularities.

In this chapter, Section 7.1 summarizes shape-from-symmetry approaches. Sec-

tion 7.2 explores various global regularity patterns in 2.5D building structures. Sec-

tion 7.3 presents an automatic algorithm to discover and enforce global regularities

through a series of alignment steps. Finally, Section 7.4 shows 2.5D modeling results

with high quality in terms of both geometry and human judgement.

7.1 Review of Shape-from-Symmetry Approaches

In both computer vision and computer graphics, symmetry has been identified as reliable

global knowledge in 3D reconstruction. For instance, Fisher [16] introduces domain

knowledge of standard shapes and relationships into reverse engineering problems.

Thrun and Wegbreit [57] detect symmetries and utilize them to extend partial 3D mod-

els into occluded space. Gal et al. [19] adopt 1D wires to carry both local geometry

information and global mutual relationships in man-made objects. Li et al. [36] extract

relationship graphs among primitives to encode intra-part relations and use them to fur-

ther improve the reconstruction quality.
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Figure 7.2: Modeling results generated from the same input point cloud by manual
creation, the modeling method proposed in this chapter, 2.5D dual contouring with prin-
cipal direction snapping, and a primitive-based method [34]. The new modeling method
creates the most visually convincing result among all three automatic methods since its
resulting building model conforms to the most global regularities.

These methods are similar in spirit to the method presented in this chapter. While

previous research work focuses on 3D man-made objects, this research is the first to

explore global regularities in 2.5D building models composed of roof patches and verti-

cal walls.
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Figure 7.3: A typical gable-shaped building roof containing a set of 2.5D elements
(e.g.,plane primitive, boundary segments, and ridges)

7.2 Global Regularities

In 2.5D building models, global regularities characterize the inter-element similarities

and relations arising from human design and construction. They are particularly use-

ful in correcting plane primitives and creating more visually convincing building mod-

els. This section explores various global regularity patterns that commonly exist in

2.5D building models, and demonstrates them using a typical gable-shaped building

roof shown in Figure 7.3.

Considering a 2.5D building model composed of plane primitives including planar

roof patches and planar facade patches, it can be equivalently represented by a set of

planar roof patches together with their boundary segments; because given the 2.5D con-

straints that roof surfaces are always bounded by vertical facades, planar facade patches

and linear roof boundary segments have the same projection on the x-y plane. In partic-

ular, the planar roof patch set is denoted as P = {Pi : (v − pi) · ni = 0} in which each

plane Pi is determined by a normal-position pair (ni,pi). A boundary segment set for

each planar roof patch is collected by intersecting Pi with its surrounding planar facade

patches, denoted as Bi (e.g., in Figure 7.3, B1 = {b1, b2, b3}). The following sections
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explore global regularities among the 2.5D element set P ∪ (∪iBi) from three aspects:

roof-roof regularities, roof-boundary regularities, and boundary-boundary regularities.

7.2.1 Roof-Roof Regularities

This section focuses on two classes of commonly encountered regularities between roof

plane pair (Pi, Pj) as follows.

7.2.1.1 Orientation regularities

In 3D models, the orientation regularities are usually defined as the orthogonality or par-

allelism between plane normals (e.g., [36]). This definition, however, cannot be directly

applied to 2.5D building models for two reasons: first, roof plane normals rarely show

orthogonality or parallelism; second, roof inclination and direction are of more interest

in building modeling. In 2.5D models, orientation regularities are not determined by the

angle between plane normals, but by the projections of normals on either the x-y plane

or the z-axis. For instance, although n1 and n2 in Figure 7.3 do not exhibit orthogonality

or parallelism, they show strong orientation regularities since their projections on the x-

y plane are opposite. Therefore, I choose to write plane normals in spherical coordinates

(θ(n), φ(n)):

θ(n) = arccos(nz), (7.1)

φ(n) = arctan(ny, nx), (7.2)

where θ(n) ∈ [0, π/2) and φ(n) ∈ [0, 2π) (Figure 7.3 right).

Intuitively, θ(n) determines the inclination of the planar roof patch, and φ(n) indi-

cates the direction of the slope. As humans are particularly interested in roof patches

having the same inclination and roof patches exhibiting regularized slope directions
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(either orthogonal or parallel), four typical roof-roof orientation regularities are defined

accordingly:

• θ-equality when θ(ni) = θ(nj),

• φ-equality when φ(ni) = φ(nj),

• φ-opposite when φ(ni) = φ(nj)± π,

• φ-orthogonality when φ(ni) = φ(nj)± π
2
, 3π

2
.

For example, plane pair (P1, P2) in Figure 7.3 exhibits the same inclination and the

opposite slope direction. Using the above formulation, these characteristics are denoted

as θ-equality and φ-opposite respectively.

7.2.1.2 Placement regularities

Placement of roof planes (i.e., roof positions) by themselves do not contain much reg-

ularity information. However, the placement of intersections between roof plane pairs

may carry meaningful structural information about the building. In particular, ridges are

defined to reveal the regularities of roof plane placements.

Ridge definition: for a neighboring plane pair (Pi, Pj) satisfying both θ-equality and

φ-opposite, the intersection of Pi and Pj is defined as a ridge, denoted as ri,j .

The direction of ridge ri,j is uniquely determined as

d(ri,j) = (sin(φ(ni)),− cos(φ(ni)), 0)
T . (7.3)

Since d(ri,j) is parallel to the x-y plane, the placement of ri,j can be parameterized

by a pair of real numbers (h(ri,j), p(ri,j)), denoting the height of ri,j and the distance

from origin to ri,j’s projection on the x-y plane respectively. They can be calculated by
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solving an equation system with plane equations regarding (ni,pi) and (nj,pj). Two

types of placement regularities for ridge pair (ri,j, rk,l) are defined as:

• Ridge-height-equality when h(ri,j) = h(rk,l),

• Ridge-position-equality when d(ri,j) ∥ d(rk,l) and p(ri,j) = p(rk,l).

7.2.2 Roof-Boundary Regularities

I observe that the majority of boundary segments are aligned either orthogonally (e.g.,

b2 in Figure 7.3) or parallel (e.g., b1, b3) to the normals of their owner planes (e.g.,

P1), when projected on the x-y plane. Therefore, this section focuses on roof-boundary

regularities between plane Pi and its boundary segments Bi. The direction of Pi on the

x-y plane is denoted by a 2D vector oi = (cos(φ(ni)), sin(φ(ni)))
T , and the direction of

a boundary segment bj’s x-y projection is denoted as o(bj) = P(d(bj)), bj ∈ Bi, where

P is the projection operator and d(bj) is the bi’s direction in 3D space. There are:

• o-parallelism when oi ∥ o(bj),

• o-orthogonality when oi ⊥ o(bj),

7.2.3 Boundary-Boundary Regularities

As the orientation regularities among boundary segments can be implied from roof-

boundary regularities and roof-roof orientation regularities, this section focuses on

placement regularities between boundary segment pairs. In particular, two significant

regularity patterns are noted: first, boundary segments that are parallel to the x-y plane

may have similar heights (e.g., (b2, b5) in Figure 7.3); second, when projected onto

the x-y plane, boundary segments with the same direction may align to the same line

(e.g., (b1, b6) and (b3, b4)). Thus, boundary-boundary regularities are defined as follows,
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Figure 7.4: Pipeline of the modeling approach: a 2.5D point cloud (top left) is trans-
formed to a building model (bottom left) through a series of steps. Global regularities
are discovered and enforced in each alignment step.

where h(bi) is the height of boundary segment bi, and p(bi) is the distance from origin

to bi’s projection on the x-y plane:

• Segment-height-equality when h(bi) = h(bj), and both d(bi) and d(bj) are par-

allel to the x-y plane,

• Segment-position-equality when o(bi) ∥ o(bj) and p(bi) = p(bj).

7.3 Modeling with Global Regularities

Given a noisy 2.5D point cloud as input, this section presents an automatic method to

simultaneously detect locally fitted plane primitives and global regularities. In general,

a discover-then-align strategy is adopted: once initial plane primitives are identified,

the modeling algorithm discovers global regularities from them, and then immediately
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refines these initial primitives by aligning them to the global regularities. This optimiza-

tion strategy is applied individually to each type of global regularities defined in Sec-

tion 7.2. It effectively corrects the geometric errors raised by local fitting approaches,

and thus significantly improves the model quality.

An overview of this approach is shown in Figure 7.4. The building modeling system

contains three main modules to create a 2.5D building model (bottom left) from a noisy

aerial scan (top left):

1. Planar roof patch extraction: As shown in Figure 7.4 top, with plane primitives

detected via local fitting, two discover-and-align steps are sequentially executed

to detect the roof-roof regularities and refine the planar roof patch, namely, ori-

entation alignment and placement alignment. Both planar roof patches and the

roof-roof regularities are iteratively generated in a coarse-to-fine manner.

2. Boundary segment production: The modeling algorithm immediately enforces

the roof-boundary regularities by creating a rectangular bounding box for each

planar roof patch, and identifying boundary segments from bounding box edges,

shown as the black lines in Figure 7.4 bottom. These boundary segments are

further refined by discovering and enforcing boundary-boundary regularities.

3. Model generation: Vertical facades are automatically generated from boundary

segments to connect roof patches and the ground. Rectangular roof patches are

pruned by neighboring elements. A 2.5D building model is produced by combin-

ing both planar roof patches and vertical facades as shown in Figure 7.4 bottom

left.
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7.3.1 Planar Roof Patch Extraction

Given a set of points equipped with normals1, a popular plane detection algorithm is

adopted for aerial LiDAR scans [34, 60] to find plane primitives: a region-growing

procedure is applied to find spatially connected point clusters with similar normals;

then plane primitives are locally fitted to individual point clusters. The detected plane

primitive set is denoted as P = {Pi}. Orientation alignment and placement alignment

are applied to P = {Pi} sequentially.

7.3.1.1 Orientation alignment

By expressing plane normals in spherical coordinates, the orientation regularities can be

categorized into two classes: θ-equality finds planes with similar slope angles, while φ-

equality, φ-opposite and φ-orthogonality show regularized roof patch directions. These

orientation regularities can be discovered by detecting clusters of Θ = {θ(ni)} and

clusters of Φ = {φ(ni) mod (π/2)} respectively. Each angle cluster implies a set of

corresponding orientation regularities while the center of each cluster predicts the best

alignment. In particular, the complete-linkage clustering algorithm [12] is adopted to

identify clusters in Θ and Φ. Cluster center sets CΘ and CΦ are taken as constraints in the

subsequent alignment stage, in which θ(ni) and φ(ni) are snapped to the corresponding

cluster centers in CΘ and CΦ.2

1Normals can be effectively estimated via covariance analysis [47].

2In singular cases where θ(ni) ≈ 0, φ(ni) becomes unstable. Thus, θ(ni) is snapped to 0 and φ(ni)
is assigned to the most popular φ ∈ CΦ.
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7.3.1.2 Placement alignment

To effectively deal with placement regularities, ridges are detected from neighbor-

ing plane pairs. Similar to orientation alignment, the placement alignment algo-

rithm decouples the placement alignment into two independent sub-problems: align-

ing ridge heights towards ridge-height-equality and aligning ridge positions towards

ridge-position-equality. These placement regularities can be discovered by finding clus-

ters of ridge height set H = {h(ri,j)}; and clusters of ridge position set S(d) =

{p(ri,j)|d(ri,j) ∥ d}, regarding each ridge direction d. Cluster center sets are denoted

as CH and CS respectively, and used as regularity constraints henceforth. In the align-

ment stage, ridge height h(ri,j) and position p(ri,j) are both aligned to their cluster cen-

ters, resulting in modifications on plane position pi and pj . In order to avoid conflicts

between ridge height alignment and ridge position alignment, the former only affects the

z values of position vectors, while the latter makes modifications to the x and y coordi-

nates. Therefore, the only conflict source lies in planes that have multiple ridges, where

the ridges compete in modifying the plane’s position. In this case, only the longest ridge

is allowed to modify the position. The effects from other ridges are ignored.

7.3.1.3 Coarse-to-fine iteration

The planar roof patch extraction executes in a coarse-to-fine manner, as demonstrated

in Figure 7.5. In particular, the modeling system fits planes to the input points, makes

orientation alignment and placement alignment to the plane primitives, discards points

already associated with existing plane primitives, and then iterates through these steps

with three modifications until no more plane primitives can be found by planing fitting:

1. Plane-fitting criterion is loosened to accept smaller plane patches. In particular,

normal variance allowance α is increased and the minimum number of points
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Iteration 1 Iteration 3Iteration 2

Figure 7.5: Coarse-to-fine planar roof patch extraction

required to validate a plane primitive K is reduced. Empirically, α remains pi/12

while K is reduced by half in each iteration, from 200 to 25.

2. In plane-fitting, instead of randomly picking region-growing seed, the plane

detection algorithm starts from points with normals that are close to normal

n(θ, φ),∀(θ, φ) ∈ CΘ × CΦ. These points have great potential to grow into plane

primitives conforming to existing orientation regularity constraints.

3. In alignment steps, the new plane primitives first attempt to snap to existing con-

straint sets {CΘ, CΦ, CH, CS}. Clustering is performed only for primitives that can-

not align to the existing constraints given a distance threshold. New cluster centers

are combined with existing centers to form regularity constraints for the next iter-

ation.

These modifications are driven by two observations: first, large plane primitives are

more reliable in producing global regularity constraints, and thus the iterative algorithm

begins with large primitives and requires small primitive to be snapped to large primi-

tives if possible (modification 3); second, the regularity constraints detected from large

primitives can greatly improve the robustness of plane fitting for small patches (modifi-

cation 2).
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7.3.2 Boundary segment production

Given a set of plane primitives as shown in Figure 7.4 top right, initial boundary seg-

ments are created for each planar roof patch with help of roof-boundary regularities.

Segment height alignment and segment position alignment are performed based on

boundary-boundary regularities.

7.3.2.1 Boundary segment initialization

As discussed in Section 7.2.2, most boundary segments in 2.5D building models con-

form to the roof-boundary regularities, i.e., when projected on the x-y plane, boundary

segments are either orthogonal or parallel to the normals of their owner planes. On the

other hand, boundary segments represent the borders of roof patches, and thus bound

the patch content, i.e., points associated with the roof plane. Considering a planar roof

patch Pi and the set of points associated with it denoted as Vi; a boundary extraction

algorithm computes a rectangular bounding box Ri of point projections P(Vi) on the x-

y plane, with Ri’s orientation following oi = (cos(φ(ni)), sin(φ(ni)))
T . The segment

set Bi is initialized by back projecting Ri’s edges onto Pi.

Given that the plane normals are already aligned to a small set of orientation con-

straints CΦ, the x-y directions of boundary segments fall into a few 2D directions, which

can be regarded as building-scale principal directions (as discussed in Section 3.4.3).

In the special case where |CΦ| = 1, the boundary segments are in two orthogonal x-y

directions, forming rectilinear contours for building models [41].

7.3.2.2 Segment height alignment

The modeling system now applies segment height alignment to horizontal boundary

segments. Segment-height-equality is discovered and enforced by a clustering method

similar to previous alignment steps with two additional rules:
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1. Heights of boundary segments from the same plane patch cannot belong to the

same cluster, since snapping them together risks making the roof patch degener-

ate.

2. For each plane pair (Pi, Pj) that creates a ridge ri,j , the boundary segments oppo-

site to ri,j (e.g., b2 and b5 in Figure 7.3) are tested with a relaxed criteria, because

each ridge indicates a high probability of a reflection-symmetry.

A boundary segment is marked as “fixed” if its height is snapped to a cluster with more

than one element. The position of each fixed segment is determined accordingly by

substituting the modified height value into the plane equation. These positions act as

placement constraints Cp in the next step.

7.3.2.3 Segment position alignment

Segment position alignment is applied to the remaining boundary segments including

both non-horizontal segments and horizontal segments that are not marked as “fixed” in

the previous step. Positions of these segments first attempt to snap to elements in Cp,

and only join the position clustering procedure when the snapping attempt fails.

7.3.3 Model Generation

With planar roof patches and their boundary segments generated and aligned to the

global regularities, a 2.5D building model is reconstructed by combining roof patches

and vertical facades, as shown in Figure 7.4 bottom left. The facades are produced

from boundary segments connecting roof patches to the ground, while rectangular roof

patches are pruned by neighboring elements including both roof patches and facades.
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Metric This method
2.5D dual
contouring

Primitive-based
method [34]

Manual
creation

Triangle # 130 214 89 78
Avg. dis2 0.012 0.016 0.018 0.058

Outlier ratio 0.9‰ 10.0‰ 11.1‰ 17.3‰

Table 7.1: Quantitative results for the comparison in Figure 7.6

7.4 Experimental Results

This section first compares the modeling method proposed in this chapter with two

existing approaches (i.e., 2.5D dual contouring and a primitive-based method [34]).

Figure 7.2 shows a qualitative comparison between these methods. The modeling

result with global regularities has the most similar visual appearance to manual cre-

ation, because it conforms to the most global regularities that characterize the intrinsic

structure of building models. In contrast, 2.5D dual contouring only considers bound-

ary direction similarities by introducing the principal direction snapping algorithm,

while [34] detects primitives but does not deal with the relations between them. In

addition, quantitative comparison between the three methods are made using metrics

shown in Figure 7.6 and Table 7.1. While the modeling result with global regularities

shows comparable triangle number and average squared distance compared with pre-

vious approaches, it significantly reduces the outlier ratio (i.e., the ratio of points with

squared distances greater than 0.25m2), because the modeling method can robustly fits

small plane primitives through iterations with global regularities detected and updated

progressively.

The modeling method with global regularities is further tested on several LiDAR

scans of buildings in the city of Atlanta, as illustrated in Figure 7.7. The input contains

aerial LiDAR point cloud with 17 samples/m2 resolution (first column). Planar roof

patches and their boundary segments are detected and aligned with global regularities
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> 0.25

0.0

Manual 

creation
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2.5D dual 
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Primitive-based 

method

Figure 7.6: A comparison of geometric fitting errors (i.e., squared distances from input
points to the model surfaces) between models created by four different approaches

learnt from them (second column). 2.5D building models are reconstructed from these

primitives by pruning the roof patches (see examples in the last three rows) and creat-

ing vertical facades from boundary segments (third column). Given the aerial imagery

as reference (fourth column), the new results are more “realistic” than the 2.5D dual

contouring results (last column). Table 7.2 shows the statistics of the experiments in

Figure 7.7. Computation time is measured on a laptop with Intel i-7 CPU 1.60GHz and

6GB memory.
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Input point cloud
Plane primitives aligned 

to global regularities
Our modeling result Aerial imagery

2.5D dual contouring result 

for comparison

Figure 7.7: Experiments on several building scans. By discovering global regularities
and enforcing them on the planar roof patches and their boundary segments (second
column), the modeling algorithm creates visually convincing 2.5D building modelings
(third column). Aerial imagery and 2.5D dual contouring results are included as refer-
ence.
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Chapter 8

Modeling Residential Urban Areas

(a) Input aerial point cloud (c) Aerial imagery as a reference(b) Our modeling result

Figure 8.1: Given (a) a dense aerial LiDAR scan of a residential area (point intensities
represent heights), the residential urban modeling system reconstructs (b) 3D geometry
for buildings and trees respectively. (c) Aerial imagery is shown as a reference.

Two new challenges emerge when the urban modeling problem extends to residential

areas. First, as shown in Figure 8.1(a), vegetation is a major component of urban reality

in residential areas. An urban modeling method for residential areas should detect and

reconstruct both buildings and trees, e.g., as in Figure 8.1(b). The second challenge

lies in the classification method: dense LiDAR scans capture the detailed geometry of

tree crowns, which may have similar height and local geometry features as rooftops of

residential buildings. Figure 8.2 shows such an example where part of the tree crown

shows similar or even better planarity than part of the rooftop (see closeups illustrating

local points as spheres together with the optimal plane fitted to them). Classification

algorithms based on local geometry features may fail and produce significant modeling

errors. E.g., Figure 8.2 right.
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A

B

Figure 8.2: Local geometry features become unreliable when dealing with residential
areas with rich vegetation. In closeups of (A) a tree crown region and (B) a rooftop,
points are rendered as spheres while a locally fitted plane is rendered in yellow. Middle:
classification results from the general urban modeling system in Chapter 3, trees in
green, buildings in purple, and ground in dark grey. Right: modeling artifacts are created
because of classification errors.

To address these two challenges, this chapter presents a robust classification method

to classify input points into trees, buildings, and ground. Building models and trees are

created from these points using 2.5D dual contouring and a novel leaf-based tree model-

ing approach, respectively. The heart of the classification method is a simple, intuitive,

but extremely effective measurement. In particular, I observe that residential buildings

usually show a strong 2.5D characteristic, i.e., they are composed of skywards roofs

and vertical walls; both are opaque and thus prevent the laser beams from penetrating

the building structure. Therefore, there is no point sample inside the building structure.

The rooftops (or ground) become the lowest visible surface at a certain x-y position, as

illustrated in Figure 8.3 left. In contrast, trees, composed of branches and leaves, do not

have this 2.5D structure. With multiple passes of scanning from different angles, the

point cloud captures not only the top surface of the tree crown, but also surfaces inside

and underneath the crown, as shown in Figure 8.3 right.

In this chapter, Section 8.1 reviews tree detection and tree modeling approaches

respectively. Section 8.2 proposes an effective algorithm to classify trees, building roofs,

and ground. In Section 8.3, a hybrid model containing both 2.5D building models and
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Second pass

First pass First pass
Second pass

Point samples

Building

Tree

Ground Ground

Figure 8.3: While building structures have a 2.5D characteristic, trees do not possess
such property. Dense laser scans may capture surface points under the tree crown (right).

leaf-based tree models is generated in an automatic and robust manner. Experimental

results are shown in Section 8.4.

8.1 Related Work

8.1.1 Tree Detection in LiDAR

In urban modeling systems, trees are often recognized as outliers and thus are classified

and removed in the first step. Most of the classification algorithms rely on point-wise

features including height [34, 39, 52, 58] and its variation [5, 39, 52], intensity [39, 52],

and local geometry information such as planarity [34, 60], scatter [34, 58], and other

local geometry features. Heuristics or machine learning algorithms are introduced as

classifiers based on the defined feature set. To further identify individual building roof

patches, segmentation is either introduced in a post-classification step, or combined with

classification in the form of energy minimization such as [34].

Nevertheless, the method proposed in this chapter is the first to introduce the 2.5D

characteristic of building structures into the classification problem. A simple, efficient
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and effective classification algorithm is presented, which gains great accuracy in resi-

dential areas with rich vegetation.

8.1.2 Tree Modeling

Tree modeling is a missing part in most of the aerial LiDAR based urban modeling

approaches. To the best of my knowledge, Lafarge and Mallet [34] is the only research

work which addresses the tree modeling problem by matching simple ellipsoidal tem-

plate to tree clusters. This method, however, is problematic when dealing with compli-

cated tree structures in residential areas, e.g., Figure 8.1(a).

Computer graphics and remote sensing communities have made great efforts in mod-

eling trees from ground LiDAR and imagery, such as [9, 38, 44, 55, 56, 63]. A general

tree model is broadly adopted in these literatures, composed of skeletal branches and

leaves attached to them. Inspired by these efforts, this chapter proposes leaf-based tree

modeling from aerial LiDAR scans.

8.2 Point Cloud Classification

Given an aerial LiDAR point cloud of a residential area as input, the objective of clas-

sification is to classify points into three categories: trees, buildings, and ground. As

mentioned previously and illustrated in Figure 8.3, the 2.5D characteristic is the key dif-

ference between trees and buildings (or ground). In order to formulate this concept, the

point cloud is first embedded into a uniform 2D grid G. In each grid cell c, the point set

P (c) is segmented into multiple layer fragments L(c), using local distance-based region

growing. Ideally, a layer fragment lbuilding ∈ L(c) lying on a 2.5D object (rooftop or

ground) must have the lowest height among all layer fragments in L(c), because the
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rooftop (or ground) is always the lowest visible surface to laser beams at a certain x-

y position, as analyzed previously. On the other hand, a tree layer fragment ltree can

exhibit any height. However, as there is usually a ground or rooftop surface underneath

tree samples, ltree is not expected to be the lowest layer fragment in L(c). From an

energy minimization perspective, these features can be described by a data energy term

Ed(xl) for each l ∈ L(c) as:

Ed(xl) =


α if xl = building or ground, and l is not the lowest in L(c)

β if xl = tree, and l is the lowest layer fragment in L(c)

0 otherwise

(8.1)

where xl is the label of layer fragment l.

To further discriminate building and ground in the energy minimization framework,

elevation of layer fragment e(l) is introduced and defined as the height difference

between l and the ground elevation at c’s center [34, 58]1. Another data energy term

Eg(xl) is defined accordingly:

Eg(xl) =


γ ·max(1− e(l)

σ
, 0) if xl =building

γ ·min( e(l)
σ
, 1) if xl =ground

0 if xl =tree

(8.2)

where σ is the normalization factor. Empirically, σ = 6m, as suggested in [34].

1The ground elevation map can be easily estimated by assigning a 20m-by-20m coarse grid, estimating
ground height with the lowest point in each cell, and applying linear interpolation across the entire coarse
grid.
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With a smooth energy Es(xl1 , xl2) defined over all neighboring layer fragment pairs

(i.e., layer fragments belonging to neighboring cells and satisfying certain distance cri-

teria), a Markov Random Field can be built, which leads to an energy minimization

problem over the labeling x of the entire layer fragment set L:

E(x) =
∑
l∈L

(Ed(xl) + Eg(xl)) + λ
∑

(l1,l2)∈N

Es(xl1 , xl2) (8.3)

where N is the set of neighboring layer fragment pairs, and smooth energy Es(xl1 , xl2)

is defined as characteristic function 1xl1
̸=xl2

.

With the energy minimization problem being solved using the well-known graph-cut

method [3], point labels are determined as the label of the corresponding layer fragment.

To further construct roof patches from building points, a region growing algorithm is

applied based on certain distance criteria. While large building patches are adopted as

rooftops, small patches are considered as outliers and removed henceforth.

Figure 8.4 demonstrates the entire process of point cloud classification. Input points

are first discretized into layer fragments. For illustration purpose, Figure 8.4(b) shows

only the lowest layer fragment in each cell. They faithfully capture the skyward surfaces

of 2.5D structures. By solving an energy minimization problem, building and ground

layer fragments are detected and shown in Figure 8.4(c). Because of the smooth energy

term, eaves are segmented as part of the building roof, and small clusters of tree layer

fragments with low heights are correctly detected, as illustrated in the closeups respec-

tively. Finally, the classification result is applied to the point cloud and a region growing

algorithm successfully groups roof patches from building points, i.e., Figure 8.4(d).

121



Layer fragments representation

(a) Input points (b) Lowest layer fragments in cells

(c) Building and ground layer fragments

(tree layer fragments not shown for clarity)
(d) Points with classification results

Figure 8.4: A demonstration of the classification algorithm: (b) the lowest layer frag-
ments faithfully capture the skyward surfaces of 2.5D structures; (c) building and ground
layer fragments are rendered in purple and grey respectively; (d) trees and outliers are
in black while building roof patches are rendered in bright colors.

8.3 Modeling of Urban Elements

Based on the successful classification of input points, different modeling approaches are

introduced for trees, buildings, and ground respectively.

8.3.1 Tree Modeling

Modern tree modeling approaches adopt a general tree structure composed of skele-

tal branches and leaves attached to them. Tree reconstruction usually begins with a
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branch generation algorithm followed by a leaf modeling approach. However, unlike

ground-based laser scans and imagery, aerial LiDAR date captures very few samples

on branches, making branch generation a difficult task. Therefore, I choose to directly

model tree leaves by fitting surface shapes around tree points having sufficient neigh-

bors.

In particular, for each tree point p with sufficient neighbors, Principal Component

Analysis is applied to its neighboring point set N(p) to fit an ellipsoid. Eigenvectors

v0,v1,v2 and eigenvalues λ0, λ1, λ2 of the covariance matrix represent the axes direc-

tions and lengths of the ellipsoid respectively. The inscribed octahedron of the ellipsoid

is then adopted to represent the local leaf shape around p. Specifically, an octahedron is

created with six vertices located at {vp ± sλ0v0,vp ± sλ1v1,vp ± sλ2v2}, where vp is

the location of p and s is a user-given size parameter.

A uniform sampling over the tree point set Ptree can be applied to further reduce the

scale of the reconstructed models.

8.3.2 Building Modeling

2.5D dual contouring detailed in Chapter 5 is adopted to create building models from

rooftop patches through three steps: (1) sampling 2.5D Hermite data over a uniform 2D

grid, (2) estimating a hyper-point in each grid cell, and (3) generating polygons.

The only challenge in applying 2.5D dual contouring to residential area data lies in

rooftop holes caused by occlusion. To solve this problem, a hole-filling step is added

right after 2.5D Hermite data is sampled from input points. In particular, the hole-filling

step scans the entire 2D grid to detect rooftop holes, and solves a Laplace’s equation

▽2z = 0 to fill these holes, where z represents the heights of surface Hermite samples
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at grid corners2. Existing surface Hermite samples serve as the boundary condition of

the Laplace’s equation.

8.3.3 Ground Modeling

Ground models can be easily created by rasterizing ground points into a DSM (digital

surface model). Holes are filled via linear interpolation.

8.4 Experimental Results

The residential urban modeling system is tested on various data sets. For each data set,

the following parameter configuration is adopted with respect to the data resolution. The

neighborhood radius r is set to 3√
d

given d as the point density in m−2, to ensure suffi-

cient samples in a point’s neighborhood. Octahedron size s is chosen by the user in the

interval [1
r
, 3
r
]. Energy function parameters, i.e., {α, β, γ, λ} are set to {1.0, 2.0, 0.5, 4.0}

empirically. This parameter configuration works well for all the data sets that have been

tested.

Figure 8.6 shows the urban reconstruction results for a 520m-by-460m residential

area in the city of Atlanta. The input contains 5.5M aerial LiDAR points with 22.9/m2

resolution. The modeling system reconstructs 56K triangles for building models, and

53K octahedrons as tree leaves, in less than two minutes on a consumer-level laptop.

As illustrated in the closeups of Figure 8.6, the classification algorithm successfully

classifies points into trees, ground, and individual building patches (second column).

A hybrid urban model is generated by combining 2.5D polygonal building models and

2Surface Hermite data is sampled per grid corner, by intersecting a vertical line and the rooftop surface.
See Section 5.3.1 for details.
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Atlanta area #2 Denver area

Figure 8.5: The residential urban modeling system is tested against multiple data sets
from different sources. The system robustly reconstructs urban reality despite the varia-
tion in data resolution, building patterns, and tree types.

leaf-based tree models (third column). Aerial imagery is given in the last column as a

reference.

The residential urban modeling system is then tested on another two data sets, with

data resolution ranging from 6/m2 to 19/m2. Visually appealing urban models are recon-

structed respectively, despite the variation in point density, building model patterns, and

tree types, as shown in Figure 8.5. To quantitatively evaluate the modeling results, the

false positives (unexpected results) and false negatives (missing results) of buildings are

counted by comparing modeling results with aerial imagery as a trusted external judge-

ment. In all three experiments, no false negative is found, i.e., all building structures

are successfully detected and reconstructed by the modeling system. In addition, false

Data set Point # Resolution
Building

#
Building

Tri. #
Building
error rate

Octahedron
#

Atlanta #1 5.5M 22.9/m2 418 55,568 1.1% 52,924
Atlanta #2 4.0M 18.8/m2 323 61,492 0.7% 29,151

Denver 1.0M 6.3/m2 290 42,942 0.6% 17,054

Table 8.1: Statistics of the experiments on three different data sets
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Data set Classification
Normal

estimation
Building
modeling

Tree
modeling

Total time

Atlanta #1 9s 45s 54s <1s 109s
Atlanta #2 6s 29s 32s <1s 68s

Denver 3s 8s 11s <1s 23s

Table 8.2: Execution time of each step in the modeling system

positives exist in the form of small building-like trees and incorrectly classified ground

components. The error rate is then calculated as the ratio of the number of triangles in

false positives to the total number of triangles in all building models. Table 8.1 con-

tains statistics of the three experiments, in which error rates are generally low. Table 8.2

shows the computation time, measured on a laptop with Intel i-7 CPU 1.60GHz and

6GB memory.
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(b)

(b)

(a)

(a)

(c)

(c)

Input point cloud Classification results Urban reconstruction Aerial Imagery

Atlanta area #1

Figure 8.6: Urban models reconstructed from 5.5M aerial LiDAR points for a residential
area in the city of Atlanta
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

This research studies the complicated problem of reconstructing 3D urban models from

aerial LiDAR point clouds. An automatic urban modeling system is proposed in Chap-

ter 3, which divides this problem into four sub-problems, namely, classification, seg-

mentation, building modeling, and terrain modeling. Automatic algorithms are given to

solve these problems individually. Two extensions based on prior knowledge are intro-

duced to enhance the system, including a principal direction snapping mechanism and a

non-planar shape modeling module.

In order to give the urban modeling system the ability to seamlessly handle huge

data sets with billions of LiDAR points, Chapter 4 proposes a streaming framework

which utilizes an out-of-core processing architecture. By decomposing each pipeline

module into streaming operators and streaming states, the general urban modeling sys-

tem is adapted into the streaming framework. Experiments are done on a few large-scale

data sets, which no previous approach is able to process with such a small amount of

resource.

From Chapter 5 to Chapter 8, I study the 2.5D nature of building structures. Theories

and algorithms are proposed based on the 2.5D characteristic of building models.

In Chapter 5, a 2.5D geometry representation is given for polygonal building models.

A robust data-driven method is proposed to automatically create building models from

aerial LiDAR point clouds. The reconstruction results are 2.5D models composed of
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complex building roofs connected by vertical walls. By extending dual contouring into

a 2.5D method, the 2.5D dual contouring algorithm optimizes the surface geometry and

the boundaries of roof layers simultaneously. Sharp features are detected and faithfully

preserved during triangulation.

Chapter 6 defines 2.5D building topology as a combination of topological features

and the associations between them. Convenient tools are given to change model geom-

etry without modifying the topology. In addition, 2.5D dual contouring is extended

with topology control strategies, to achieve a more flexible adaptive structure for sim-

plification. The outputs have the same representability as models created by 2.5D dual

contouring, but contain fewer vertices and triangles.

Chapter 7, defines global regularities in 2.5D building models to characterize the

intrinsic structure of building models. A primitive-based algorithm is proposed to dis-

cover and enforce global regularities through a series of alignment steps. This building

modeling method automatically integrates global regularities and local geometry, and

thus creates 2.5D building models with high quality in terms of both geometry and

visual judgement.

Finally in Chapter 8, the urban modeling problem is extended from downtown areas

to residential urban areas with rich vegetation. I observe the key difference between

buildings and trees in terms of the 2.5D characteristic: while buildings are composed

of opaque skyward rooftops and vertical walls, trees allow point samples underneath

the crown. This feature enables a powerful classification algorithm based on an energy

minimization scheme. By combing classification, building modeling and tree model-

ing together, the residential urban modeling system automatically reconstructs a hybrid

model composed of buildings and trees from the aerial LiDAR scan. The experiments

demonstrate the effectiveness and efficiency of this system.
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9.2 Future Work

Possible future work lies within three directions.

Modeling from dense LiDAR data

With the fast advance of acquisition techniques, extremely dense LiDAR point

clouds become available. E.g., a scan for the city of Vancouver in the year 2011 has

approximately 70 samples/m2 resolution, comparing with 6 ∼ 17 samples/m2 resolution

in the experiments shown in this thesis. These extremely dense data sets bring two new

challenges. First, besides typical urban features (buildings, trees, and ground), small

urban features such as vehicles, poles, and signal lights are also accessible in the dense

LiDAR data sets. It is a desire to reconstruct these features towards a better urban real-

ity. Second, detailed geometry of building facades are partially captured by the dense

LiDAR scans. Building modeling method can benefit from this additional information.

Building modeling with both rooftops and facades

This thesis adopts the 2.5D characteristic of building structures, and describes the

building facades as plain walls orthogonal to the x-y plane. However, in some applica-

tion, building models are required to have both rooftops and detailed facade structures.

While this thesis focuses on the building roof reconstruction, many research efforts have

attempted to model building facades from imagery (e.g., [42]) or ground based LiDAR

(e.g. [43, 67]). Future research may seek a conjunction between roof modeling and

facade modeling. The hybrid approach should connect these two types of building struc-

tures while maintaining the consistency at roof boundaries. In addition, the 2.5D nature

of building models may serve as a supporting structure for facade modeling approaches.

The global regularities in 2.5D building models can be further extended to handle the

facade structures.
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Integrating aerial LiDAR with other data sources

Aerial LiDAR data has great advantages in the urban reconstruction problem, as

demonstrated in this thesis. However, its limitation is also noticed: as point samples are

collected from nadir perspective, aerial LiDAR data hardly captures surfaces beneath

opaque objects (e.g., bridges, highways, and vehicles). Future research may alleviate

this problem by introducing other data sources to the urban modeling system, including

aerial imagery, ground based LiDAR, and panorama images (street view).
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