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Abstract

We present an approach for tracking camera pose in real
time given a stream of depth images. Existing algorithms
are prone to drift in the presence of smooth surfaces that
destabilize geometric alignment. We show that useful con-
tour cues can be extracted from noisy and incomplete depth
input. These cues are used to establish correspondence con-
straints that carry information about scene geometry and
constrain pose estimation. Despite ambiguities in the input,
the presented contour constraints reliably improve tracking
accuracy. Results on benchmark sequences and on addi-
tional challenging examples demonstrate the utility of con-
tour cues for real-time camera pose estimation.

1. Introduction

Tracking self-motion is a primary function of visual per-
ception in animals [7, 25]. In computer vision, the corre-
sponding problem of visual odometry underlies a host of
applications and has been extensively studied [5, 18, 11].
Our work concerns depth cameras, which are increasingly
utilized in computer vision systems. Our goal is to improve
the accuracy of depth camera tracking, particularly in chal-
lenging scenarios that currently lead to odometry drift.

The influential KinectFusion system [16] demonstrated
real-time depth camera tracking and dense scene recon-
struction by registering incoming depth images to a volu-
metric representation of the scene. Our work extends these
ideas by integrating occluding contours into the optimiza-
tion objective and showing that explicit handling of con-
tours can lead to significant gains in tracking accuracy. A
different extension of the KinectFusion approach was de-
veloped by Bylow et al. [2], who derived a principled op-
timization algorithm but did not track occluding contours.
Our experiments demonstrate that contour tracking has sig-
nificant benefits.

A number of odometry systems use both depth and color
images [1, 9, 26]. Our work aims to maximize tracking ac-
curacy without relying on a color image stream. One reason
is that some depth cameras are not accompanied by color
cameras. Another is that even if a color camera is present,
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Figure 1. (a) Depth and color images from an input sequence. (b)
Surface registration slips on planar surfaces, leading to tracking
drift and reconstruction failure. (c) Our approach establishes con-
tour constraints that stabilize real-time camera tracking (red). The
color image (a, right) is shown for clarity and is not used by either
approach.

its viewpoint is different and its shutter may not be perfectly
synchronized with the depth camera. Finally, we aim for
systems that function even in minimal lighting.

Our approach is based on tracking occluding contours
and using contour cues to constrain registration. This ad-
dresses a common failure mode of geometric registration
approaches based on the iterative closest point (ICP) algo-
rithm and its variants [19], namely instability in the pres-
ence of smooth surfaces [6]. This is illustrated in Figure 1,
which shows a cabinet being imaged by a depth camera. In
some aspects, the cabinet is seen as a collection of large pla-
nar surfaces that cause geometric alignment to slip and cam-
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era tracking to drift. This behavior can be easily observed
in practice and is also apparent in benchmark odometry se-
quences [22]. Our solution integrates contour constraints
into the registration objective, stabilizing camera tracking
in challenging scenarios.

Occluding contours were considered a primary source
of information in the early days of computer vision [14,
12, 3, 8]. They are now used in state-of-the-art multi-view
stereo systems to inform shape reconstruction given cali-
brated camera parameters [23, 21]. Our work leverages
contour cues in a real-time tracking system that operates
on high frame-rate depth image streams.

Merrell et al. [15] used visibility constraints in real-time
surface reconstruction, but the camera was assumed to be
localized by other means. Wang et al. [24] use contour cues
for alignment of wide-baseline range scans, but their for-
mulation was not designed for real-time tracking. Our ap-
proach jointly optimizes for projective correspondences and
robust contour constraints in a high-performance real-time
framework.

Experimental results on challenging input sequences
demonstrate that our formulation significantly improves
depth camera tracking accuracy.

2. Method

Occluding contours provide powerful geometric con-
straints due to the tangency property: for all points along
the contour generator, the normal is orthogonal to the view
ray [3]. This is the foundation of our approach. We recover
normals along contour generators from depth image gradi-
ents. Using the recovered normal information, we incor-
porate contour constraints into a surface registration frame-
work. A joint optimization objective integrates surface cor-
respondence terms and contour constraints. This stabilizes
the registration and significantly reduces drift in challeng-
ing scenarios.

We build on the KinectFusion framework [16]. In par-
ticular, we maintain a truncated signed distance function F
as a volumetric representation of the scene [4]. Each depth
image Di is registered to F to estimate a camera pose Ti,
then integrated to keep F up to date. Prior to registration,
Di is smoothed by a bilateral filter and back-projected into
the sensor’s coordinate system as a set of points Vi. To cre-
ate 3D points and normals from F, per-pixel ray casting is
used to synthesize a proxy depth image D̂i−1 at pose Ti−1.
It is back-projected as a set of points V̂i−1 with normals
N̂i−1 and transformed into the global coordinate system as
V̂g

i−1 and N̂g
i−1. The objective of registration is to find a

transformation Ti that aligns TiVi and V̂g
i−1.

Di
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Figure 2. Top: raw depth image Di (left) and detected occluding
contours (right). Missing data may lead to inaccurate contours.
Bottom: depth image D̂i−1 synthesized from the constructed volu-
metric representation (left); robust normal estimation and resulting
contour correspondence candidates (right). Despite ambiguities in
the input, detected contours in Di (top right) have appropriate cor-
respondences in the candidate set (bottom right).

2.1. Contour detection

We begin by detecting occluding contours in depth im-
ageDi. To prepare the image, we inpaint regions with miss-
ing depth information by scanning along horizontal lines
and filling in missing intervals with farther adjacent depth
values. This fills in occlusion regions that are caused by
the separation between the infrared projector and the cam-
era in structured light depth sensors [13]. In the inpainted
depth image D′i, pixels at depth discontinuities are consid-
ered contour generators. The set of contour generators is
denoted by Ci:

Ci =
{
s ∈ Di : ∃t ∈ N 8

s , s.t. D′i(s)−D′i(t) > δ
}
, (1)

whereN 8
s is the 8-neighborhood of s in D′i and δ is a depth

discontinuity threshold, set to 0.05 meters based on typical
sensor noise magnitudes [10].

Note that surfaces viewed at grazing angles can disap-
pear entirely from the depth image due to distortion of the
projected pattern and the Fresnel effect (Figure 2, top left,
point c). Such cases are handled transparently by our ap-
proach. The missing regions are filled in and inner bound-
aries are automatically flagged as contour generators, as
shown in Figure 2. The detected contours may not align
with the true contours, but inconsistencies are accommo-
dated by subsequent processing stages.

2.2. Contour correspondence

The next processing step is to establish correspondences
between detected contour generators Ci in Di and points
in the synthesized depth image D̂i−1, which represents the
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Figure 3. Notation for contour correspondence criteria.

scene model. These correspondences are computed at each
step of the ICP procedure and are used to formulate contour
constraint terms. These contour terms augment the registra-
tion objective and constrain the recomputed pose.

Let T be the pose of Di at the current ICP iteration. For
each point s ∈ Ci, we search for a point t in D̂i−1 such that
the distance between s and t in the global coordinate frame
is small and their normal vectors are aligned. The distance
criterion can be expressed as

‖TVi(s)− V̂g
i−1(t)‖ < ε. (2)

We set ε = 0.1 meters. Enforcing normal alignment is
harder. A reliable estimate of the normal Ni(s) is diffi-
cult to obtain from Di due to missing data and lateral noise
along edges [17]. Small perturbations of local silhouette ge-
ometry can yield drastic perturbations of the normal. Since
we lack precise information about silhouette geometry, we
do not have a reliable estimate of the normal. Our solu-
tion is to avoid computing the silhouette normal Ni(s) alto-
gether, while still enforcing the normal alignment criterion.
We use the fact that Ni(s) must be (nearly) perpendicular
to the view ray [3]. Let Rg

i (s) denote the view ray:

Rg
i (s) =

TVi(s)− o

‖TVi(s)− o‖
, (3)

where o is the camera origin in the global coordinate frame.
Let Ng

i (s) = TNi(s) be the normal of s in the global
frame. We have

Rg
i (s)

>Ng
i (s) ≈ 0. (4)

As illustrated in Figure 3, we can assume under reason-
able assumptions that the angle between Rg

i (s) and the view
ray at t, denoted as R̂g

i−1(t), is small. Thus (4) is approxi-
mately equivalent to

R̂g
i−1(t)

>Ng
i (s) ≈ 0 (5)
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(a) SDF derivative (b) Our approach

Figure 4. Normal estimation. (a) Numerical differentiation of the
signed distance function is unstable along edges. (b) We use an
alternative derivation to estimate the normal from the projected
depth image.

and the normal alignment criterion can be approximated as

R̂g
i−1(t)

>N̂g
i−1(t) < ζ. (6)

We use ζ = cos(75◦) and treat (6) as a necessary condi-
tion for establishing a contour correspondence with t. Intu-
itively, the reduced criterion maintains that contours remain
near-tangent to view rays under small camera motion. The
reduced criterion is not as strict as genuine normal align-
ment at s and t, but it can be enforced despite sensor noise
and is effective in practice.

A significant advantage of criterion (6) is that it is invari-
ant to the pose T and can thus can be precomputed before
the iterative registration procedure. We thus compute a set
of contour correspondence candidates Ĉg

i−1 (Figure 2 bot-
tom) and construct a kd-tree structure over this set in the
global frame. In each ICP iteration, given T and s ∈ Ci we
look up the nearest point to TVi(s) in Ĉg

i−1 and validate
equation (2).

2.3. Normal estimation

To identify contour correspondence candidates Ĉg
i−1, we

need to estimate the normal N̂g
i−1(t) for points t in D̂i−1.

Surface normals can be estimated from the numerical gra-
dient of the signed distance function F [16]. This approach
works well for smooth surfaces but is unstable along edges,
as shown in Figure 4. We develop an alternative normal es-
timation procedure designed to support robust contour cor-
respondence estimation.

We estimate normals from the synthesized depth image
D̂i−1. This is not completely straightforward because D̂i−1
was produced by a projective transformation and we seek a



fast image-based procedure that will yield surface normals
in the global coordinate frame.

We begin by filling in missing depth values using the
inpainting procedure described in Section 2.1. Let h(u, v)
denote the depth function defined by the inpainted depth
image D̂′i−1 over the image domain. This function can be
alternatively represented as the zero level set of an implicit
function F (x, y, z) defined in the coordinate frame of the
camera:

F (x, y, z) = h(u, v)− z, (7)

where

x =
1

fx
(u− cx)h(u, v), (8)

y =
1

fy
(v − cy)h(u, v). (9)

(cx, cy) is the optical center and (fx, fy) are the focal
lengths.

The normal at s = (u, v) is defined as the gradient of
F (x, y, z), i.e.

N̂i−1(s)
> = ∇F (x, y, z) =

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
. (10)

Let g(u, v, z) = (x, y, z) be a function in R3 → R3. The
gradient of (F ◦ g)(u, v, z) can be derived from equation
(7):

∇(F ◦ g)(u, v, z) =
(
∂h

∂u
,
∂h

∂v
,−1

)
, (11)

where (∂h∂u ,
∂h
∂v ) is the image gradient computed by a 7 × 7

Sobel filter. By the chain rule,

∇(F ◦ g)(u, v, z) = ∇F (x, y, z)Jg(u, v, z). (12)

The Jacobian matrix Jg(u, v, z) can be computed from
equations (8) and (9). We solve the linear system to esti-
mate the normal N̂i−1(s). This procedure is performed in
real time on graphics hardware and yields reliable normal
estimates throughout the image. Crucially, this includes
normals along occluding contours, as illustrated in Figure
4(b).

2.4. Optimization

Let K = {(s, t)} be the combined set of correspon-
dence pairs obtained by projective data association [16]
and by the contour correspondence procedure described in
Section 2.2. Our optimization objective integrates contour
alignment and surface alignment:

E(T) =
∑

(s,t)∈K

ws,t

((
TVi(s)− V̂g

i−1(t)
)>

N̂g
i−1(t)

)2

,

where ws,t is a weight that determines the relative influence
of surface correspondences and contour correspondences.
The objective is optimized iteratively [16]. We set ws,t to
1 for surface correspondences, and to w0 for contour cor-
respondences. Setting w0 = 0 reduces objective E(T) to
standard point-to-plane ICP and makes our system equiva-
lent to KinectFusion. Increasing w0 increases the strength
of contour constraints. Our approach is not sensitive to
small changes in w0. Any value between 1 and 16 satisfac-
torily enforces contour constraints and stabilizes tracking.
We set w0 = 4 in all experiments.

3. Results

We evaluate the presented approach on sequences from
the TUM RGB-D benchmark [22]. We focus on four se-
quences that demonstrate 3D scanning of objects. Our pri-
mary comparison is to two pure depth camera tracking ap-
proaches that do not rely on additional information chan-
nels: KinectFusion [16] (PCL implementation [20]) and the
algorithm of Bylow et al. [2] (implementation provided by
the authors). Each method produces a camera trajectory,
which is compared against ground truth using the RMSE
metric suggested by Sturm et al. [22]. The results are pro-
vided in Table 1. The presented approach yields the most
accurate camera trajectories. Figure 5 shows the scene mod-
els produced by different algorithms on two of the bench-
mark sequences. The models produced by our approach are
significantly better than the output of prior techniques.

For reference, we also report the performance of two
techniques that use the color image stream in addition to
the depth stream: the RGB-D odometry approach of Kerl et
al. [9] (authors’ implementation) and the algorithm of Whe-
lan et al. [26] (our implementation). The results are given in
Table 1. Our approach is more accurate than the reference
techniques, without using color information.

Figure 6 shows a variety of commonly encountered ob-
jects scanned with an Asus Xtion Live sensor and re-
constructed by the presented approach. For all of these
sequences, the surface alignment used by KinectFusion
slipped and led to catastrophic loss of track at the frames
shown in the figure. In contrast, the enforcement of contour
cues by our approach prevented drift and consistently led
to stable tracking of camera motion and reconstruction of
scene geometry.

4. Discussion

We presented a depth camera tracking approach that uses
contour cues for stabilizing tracking and reconstruction.
This fixes catastrophic drift that often occurs in the pres-
ence of smooth surfaces. Although normals at boundaries
may not be well-defined, we show how to robustly and effi-
ciently establish and utilize generalized contour constraints.



KinectFusion [16] Bylow et al. [2] Our approach Kerl et al. [9] Whelan et al. [26]
fr3/cabinet 0.624 0.020 0.015 0.323 0.021

fr3/large cabinet 0.275 0.109 0.051 0.103 0.055
fr3/structure notexture far 0.124 0.037 0.026 0.047 0.029

fr3/structure notexture near 0.252 0.016 0.023 0.384 0.023

Average 0.319 0.046 0.029 0.214 0.032

Table 1. Accuracy of estimated camera trajectories for TUM RGB-D benchmark sequences. (RMSE in meters.)

Reference color image KinectFusion [16] Bylow et al. [2] Our approach

Figure 5. Qualitative comparison of scene models reconstructed by different algorithms on two TUM benchmark sequences. The color
images are only shown for reference and were not used by any of the techniques.

Movement in the scene Missing data

Figure 7. Failure cases from the TUM benchmark. Our approach
and other approaches failed at the frames shown in the figure.

Our camera tracking approach only uses depth images, runs
in real time, and significantly improves tracking accuracy.

There are limitations and opportunities for future work.
When the depth image is missing a lot of data, for example
due to highly specular or translucent surfaces, the method

can fail. Without visible boundaries, for example when
scanning a large featureless wall, tracking can still drift.
Furthermore, there are degenerate scenarios in which even
boundary cues cannot stabilize tracking: for example, rotat-
ing the camera above a round tabletop. Finally, like prior
approaches, our work assumes that the scene is static. Fig-
ure 7 shows examples from the TUM RGB-D benchmark
[22] in which key assumptions made by our work and by
prior approaches were violated and the methods failed due
to movement in the scene or missing data.
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