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Abstract

We introduce global regularities in the 2.5D building
modeling problem, to reflect the orientation and placement
similarities between planar elements in building structures.
Given a 2.5D point cloud scan, we present an automatic ap-
proach that simultaneously detects locally fitted plane prim-
itives and global regularities. While global regularities are
extracted by analyzing the plane primitives, they adjust the
planes in return and effectively correct local fitting errors.
We explore a broad variety of global regularities between
2.5D planar elements including both planer roof patches
and planar facade patches. By aligning planar elements to
global regularities, our method significantly improves the
model quality in terms of both geometry and human judge-
ment.

1. Introduction
Building modeling is a critical problem of 3D urban re-

construction which has attracted broad interests in computer
vision community. The 2.5D characteristic of this prob-
lem has been exploited by a variety of research work either
implicitly [7, 9] or explicitly [5, 14]. These 2.5D build-
ing modeling approaches benefit from the fact that building
structures are usually composed of complicated roof sur-
faces and vertical facades; and reconstruct these two types
of features individually while preserving the consistency
between them. Aerial LiDAR point clouds are commonly
adopted as a reliable source of geometric information for
2.5D building modeling.

A popular strategy in attacking the 2.5D building model-
ing problem is to introduce primitives (e.g., planes, spheres,
cones) to represent building shapes. In particular, planes re-
ceive the most attention since they are the commonest struc-
tures in man-made objects, especially in buildings. Planar
roof patches are locally fitted from raw points, and are later
combined with vertical facades aligning with roof bound-
aries, to construct a compact mesh model while maintain-
ing low geometric fitting error rate. The main difficulty of
this strategy is that local plane fitting can become unstable
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Figure 1. Our method automatically discovers global regularities
from a noisy 2.5D point cloud, and use them to create a convinc-
ing 2.5D building model. Two orthogonal projections illustrate a
subset of the global regularities in this model (lengths in meters).

when dealing with noisy or incomplete point clouds. Arti-
facts are inevitably created from unreliable plane primitives.
To alleviate this problem, existing methods typically intro-
duce strong urban priors to prune the fitted planes, such as
roof topology [11] and Manhattan-world grammars [7, 9].
While prior knowledge successfully increases the robust-
ness of these methods, it tends to be overstrict and thus lim-
its their applicability when dealing with moderately com-
plex building structures such as the one shown in Figure 1.

We propose global regularities, a moderate yet infor-
mative structure to organize planar roof patches and roof
boundary segments. As illustrated in Figure 1 bottom, we
explore both orientation and placement regularities between
planar roof patch pairs (e.g., slope angle equality), between
roof boundary segment pairs (e.g., segment height equal-
ity), and between a planar roof patch and its boundary
segments (e.g., orthogonality between their orientations).
These global regularity patterns reveal the inter-element
similarities and relations that intrinsically exist in building
models because of human design and construction. With
these patterns, the complexity of the building modeling
problem can be significantly reduced for complicated build-

1



ing models such as the one in Figure 1.
We present an automatic algorithm to detect global regu-

larities and utilize them to calibrate plane primitives. Unlike
the strong priors introduced by previous methods, global
regularities offer a more flexible representation of the global
knowledge in 2.5D building models, and thus enable our al-
gorithm to handle more complicated building shapes.

Another significant advantage of global regularities is
that they characterize the intrinsic structures of building
models, to which human vision is sensitive. For instance,
Figure 2 right shows two models created from plane prim-
itives. Without comparing model geometry with input
points, human vision immediately finds the top-right model
more convincing since it conforms to more global regulari-
ties.

Contributions:

1. We propose global regularities for 2.5D building mod-
els, involving orientation and placement similarities
among 2.5D elements. These elements consist of
both planar roof patches and roof boundary segments.
We define roof-roof regularities, roof-boundary regu-
larities, boundary-boundary regularities and integrate
them into a unified framework.

2. We present an automatic algorithm to discover and en-
force global regularities through a series of alignment
steps, resulting in 2.5D building models with high
quality in terms of both geometry and human judge-
ment.

2. Related Work
We review the related work from two aspects: LiDAR-

based building modeling, and shape from symmetry.

2.1. LiDAR­based Building Modeling

Many research efforts have attempted to address the
challenging problem of urban reconstruction from aerial Li-
DAR point clouds. A common modeling pipeline proposed
in recent research work [5, 7, 9, 11] includes three major
steps: (1) classification detects and removes vegetation and
noise points; (2) segmentation splits building point clus-
ters from ground; and (3) building modeling generates mesh
models from building point clusters.

The third step, i.e., building modeling, is the most com-
plicated step of the pipeline. Zhou and Neumann [14]
identify the 2.5D characteristics of this problem and pro-
pose a data-driven method named 2.5D dual contouring,
which is later extended to support 2.5D building topology
in [15]. 2.5D models are optimized solely targeting at small
quadratic fitting errors, and thus lose beauty and simplicity
from a human vision perspective (Figure 2 bottom left).
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Figure 2. Modeling results generated from the same input point
cloud by manual creation, our method, 2.5D dual contouring
with principal direction snapping [14], and a primitive-based
method [5]. Our method creates the most visually convincing re-
sult among all three automatic methods since our building model
conforms to the most global regularities.

Another way to attack the building modeling problem
is with primitive fitting approaches. In particular, local
plane fitting is a popular strategy in extracting simple roof
primitives [7, 9, 11, 13]. As discussed in Section 1, ar-
tifacts can be created due to misaligned plane primitives,
and thus strong urban priors are frequently introduced to re-
strict the plane primitives. Typical priors include roof topol-
ogy [11], Manhattan-world grammars [7, 9], and principal
directions [13, 14]. Other research work aims at extend-
ing the ability of representing complicated shapes, by intro-
ducing additional primitive shapes and optimizing junctions
between fitted primitives [4, 5, 12].

Nevertheless, we are the first to exploit global regulari-
ties and significantly improve the modeling quality in terms
of both fitting accuracy and human vision judgement. A
comparison between our method and two recent approaches
is shown in Figure 2.

2.2. Shape from Symmetry

In both computer vision and computer graphics, sym-
metry has been identified as reliable global knowledge in
3D reconstruction. For instance, Fisher [2] introduces do-
main knowledge of standard shapes and relationships into
reverse engineering problems. Thrun and Wegbreit [10] de-
tect symmetries and utilize them to extend partial 3D mod-
els into occluded space. Gal et al. [3] adopt 1D wires to
carry both local geometry information and global mutual
relationships in man-made objects. Li et al. [6] extract re-
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Figure 3. A typical gable-shaped building roof containing a set
of 2.5D elements (e.g.,plane primitive, boundary segments, and
ridges)

lationship graphs among primitives to encode intra-part re-
lations and use them to further improve the reconstruction
quality.

These methods are similar in spirit to our method. While
previous research work focuses on 3D man-made objects,
we are the first to explore global regularities in 2.5D build-
ing models composed of roof patches and vertical walls.

3. Global Regularities

In 2.5D building models, global regularities character-
ize the inter-element similarities and relations arising from
human design and construction. They are particularly use-
ful in correcting plane primitives and creating more visu-
ally convincing building models. In this section, we ex-
plore various global regularity patterns that commonly exist
in 2.5D building models and demonstrate them using a typ-
ical gable-shaped building roof shown in Figure 3.

Considering a 2.5D building model composed of plane
primitives including planar roof patches and planar facade
patches, it can be equivalently represented by a set of pla-
nar roof patches together with their boundary segments;
because given the 2.5D constraints that roof surfaces are
always bounded by vertical facades [14], planar facade
patches and linear roof boundary segments have the same
projection on the x-y plane. In particular, we denote the
planar roof patch set as P = {Pi : (v − pi) · ni = 0}
in which each plane Pi is determined by a normal-position
pair (ni,pi). A boundary segment set for each planar roof
patch is collected by intersecting Pi with its surrounding
planar facade patches, denoted as Bi (e.g., in Figure 3,
B1 = {b1, b2, b3}). We explore global regularities among
the 2.5D element set P ∪ (∪iBi) from three aspects: roof-
roof regularities, roof-boundary regularities, and boundary-
boundary regularities.

3.1. Roof­Roof Regularities

We focus on two classes of commonly encountered reg-
ularities between roof plane pair (Pi, Pj) as follows.

3.1.1 Orientation regularities

In 3D models, the orientation regularities are usually de-
fined as the orthogonality or parallelism between plane nor-
mals (e.g., [6]). This definition, however, cannot be directly
applied to 2.5D building models for two reasons: first, roof
plane normals rarely show orthogonality or parallelism; sec-
ond, roof inclination and direction are of more interest in
building modeling. In 2.5D models, orientation regularities
are not determined by the angle between plane normals, but
by the projections of normals on either the x-y plane or the
z-axis. For instance, although n1 and n2 in Figure 3 do not
exhibit orthogonality or parallelism, they show strong ori-
entation regularities since their projections on the x-y plane
are opposite. Therefore, we choose to write plane normals
in spherical coordinates (θ(n), φ(n)):

θ(n) = arccos(nz), (1)
φ(n) = arctan(ny, nx), (2)

where θ(n) ∈ [0, π/2) and φ(n) ∈ [0, 2π) (Figure 3 right).
Intuitively, θ(n) determines the inclination of the planar

roof patch, and φ(n) indicates the direction of the slope. We
are particularly interested in roof patches having the same
inclination and roof patches exhibiting regularized slope di-
rections (either orthogonal or parallel). Four typical roof-
roof orientation regularities are defined accordingly:

• θ-equality when θ(ni) = θ(nj),

• φ-equality when φ(ni) = φ(nj),

• φ-opposite when φ(ni) = φ(nj)± π,

• φ-orthogonality when φ(ni) = φ(nj)± π
2 ,

3π
2 .

For example, plane pair (P1, P2) in Figure 3 exhibits the
same inclination and the opposite slope direction. Using
the above formulation, these characteristics are denoted as
θ-equality and φ-opposite respectively.

3.1.2 Placement regularities

Placement of roof planes (i.e., roof positions) by themselves
do not contain much regularity information. However, the
placement of intersections between roof plane pairs may
carry meaningful structural information about the building.
In particular, we define ridges to reveal the regularities of
roof plane placements.

Ridge definition: for a neighboring plane pair (Pi, Pj) sat-
isfying both θ-equality and φ-opposite, the intersection of
Pi and Pj is defined as a ridge, denoted as ri,j .

The direction of ridge ri,j is uniquely determined as

d(ri,j) = (sin(φ(ni)),− cos(φ(ni)), 0)
T . (3)



Since d(ri,j) is parallel to the x-y plane, the placement
of ri,j can be parameterized by a pair of real numbers
(h(ri,j), p(ri,j)), denoting the height of ri,j and the dis-
tance from origin to ri,j’s projection on the x-y plane re-
spectively. They can be calculated by solving an equa-
tion system with plane equations regarding (ni,pi) and
(nj ,pj). We define two types of placement regularities for
ridge pair (ri,j , rk,l):

• Ridge-height-equality when h(ri,j) = h(rk,l),

• Ridge-position-equality when d(ri,j) ∥ d(rk,l) and
p(ri,j) = p(rk,l).

3.2. Roof­Boundary Regularities

We observe that the majority of boundary segments are
aligned either orthogonally (e.g., b2 in Figure 3) or parallel
(e.g., b1, b3) to the normals of their owner planes (e.g., P1),
when projected on the x-y plane. Therefore, we focus on
roof-boundary regularities between plane Pi and its bound-
ary segments Bi. We denote the direction of Pi on the x-y
plane by a 2D vector oi = (cos(φ(ni)), sin(φ(ni)))

T , and
the direction of a boundary segment bj’s x-y projection as
o(bj) = P(d(bj)), bj ∈ Bi, where P is the projection oper-
ator and d(bj) is the bi’s direction in 3D space. We define:

• o-parallelism when oi ∥ o(bj),

• o-orthogonality when oi ⊥ o(bj),

3.3. Boundary­Boundary Regularities

As the orientation regularities among boundary segments
can be implied from roof-boundary regularities and roof-
roof orientation regularities, we focus on placement regu-
larities between boundary segment pairs. In particular, we
present two notable regularity patterns: first, boundary seg-
ments that are parallel to the x-y plane may have similar
heights (e.g., (b2, b5) in Figure 3); second, when projected
onto the x-y plane, boundary segments with the same direc-
tion may align to the same line (e.g., (b1, b6) and (b3, b4)).
We define boundary-boundary regularities as follow, where
h(bi) is the height of boundary segment bi, and p(bi) is the
distance from origin to bi’s projection on the x-y plane.

• Segment-height-equality when h(bi) = h(bj), and
both d(bi) and d(bj) are parallel to the x-y plane,

• Segment-position-equality when o(bi) ∥ o(bj) and
p(bi) = p(bj).

4. Modeling with Global Regularities
Given a noisy 2.5D point cloud as input, we present

an automatic method to simultaneously detect locally fit-
ted plane primitives and global regularities. In general,
we adopt a discover-then-align strategy: once initial plane

primitives are identified, our algorithm discovers global reg-
ularities from them, and then immediately refines these ini-
tial primitives by aligning them to the global regularities.
This optimization strategy is applied individually to each
type of global regularities defined in Section 3. It effec-
tively corrects the geometric errors raised by local fitting
approaches, and thus significantly improves the model qual-
ity.

An overview of our approach is shown in Figure 4. Our
system contains three main modules to create a 2.5D build-
ing model (bottom left) from a noisy aerial scan (top left):

1. Planar roof patch extraction: As shown in Figure 4
top, with plane primitives detected via local fitting, two
discover-and-align steps are sequentially executed to
detect the roof-roof regularities and refine the planar
roof patch, namely, orientation alignment and place-
ment alignment. Both planar roof patches and the roof-
roof regularities are iteratively generated in a coarse-
to-fine manner.

2. Boundary segment production: We immediately en-
force the roof-boundary regularities by creating a rect-
angular bounding box for each planar roof patch, and
identify boundary segments from bounding box edges,
shown as the black lines in Figure 4 bottom. These
boundary segments are further refined by discovering
and enforcing boundary-boundary regularities.

3. Model generation: Vertical facades are automatically
generated from boundary segments to connect roof
patches and the ground. Rectangular roof patches
are pruned by neighboring elements. A 2.5D build-
ing model is produced by combining both planar roof
patches and vertical facades as shown in Figure 4 bot-
tom left.

4.1. Planar Roof Patch Extraction

Given a set of points equipped with normals1, we uti-
lize a popular plane detection algorithm for aerial LiDAR
scans [5, 11, 13] to find plane primitives: a region-growing
procedure is applied to find spatially connected point clus-
ters with similar normals; then plane primitives are locally
fitted to individual point clusters. We denote the detected
plane primitive set as P = {Pi} and apply orientation align-
ment and placement alignment sequentially.

4.1.1 Orientation alignment

By expressing plane normals in spherical coordinates, the
orientation regularities can be categorized into two classes:
θ-equality finds planes with similar slope angles, while φ-
equality, φ-opposite and φ-orthogonality show regularized

1Normals can be effectively estimated via covariance analysis [8].
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Figure 4. Pipeline of our approach: a 2.5D point cloud (top left) is transformed to a building model (bottom left) through a series of steps.
Global regularities are discovered and enforced in each alignment step.

roof patch directions. These orientation regularities can be
discovered by detecting clusters of Θ = {θ(ni)} and clus-
ters of Φ = {φ(ni) mod (π/2)} respectively. Each angle
cluster implies a set of corresponding orientation regulari-
ties while the center of each cluster predicts the best align-
ment. In particular, we adopt complete-linkage clustering
algorithm [1] to identify clusters in Θ and Φ. Cluster center
sets CΘ and CΦ are taken as constraints in the subsequent
alignment stage, in which θ(ni) and φ(ni) are snapped to
the corresponding cluster centers in CΘ and CΦ.2

4.1.2 Placement alignment

To effectively deal with placement regularities, we first de-
tect ridges from neighboring plane pairs. Similar to ori-
entation alignment, we decouple the placement alignment
into two independent sub-problems: aligning ridge heights
towards ridge-height-equality and aligning ridge positions
towards ridge-position-equality. These placement regular-
ities can be discovered by finding clusters of ridge height
set H = {h(ri,j)}; and clusters of ridge position set
S(d) = {p(ri,j)|d(ri,j) ∥ d}, regarding each ridge direc-
tion d. Cluster center sets are denoted as CH and CS respec-
tively, and used as regularity constraints henceforth. In the

2In singular cases where θ(ni) ≈ 0, φ(ni) becomes unstable. Thus,
we snap θ(ni) to 0 and assign the most popular φ ∈ CΦ to φ(ni)

alignment stage, ridge height h(ri,j) and position p(ri,j)
are both aligned to their cluster centers, resulting in mod-
ifications on plane position pi and pj . In order to avoid
conflicts between ridge height alignment and ridge position
alignment, the former only affects the z values of position
vectors, while the latter makes modifications to the x and
y coordinates. Therefore, the only conflict source lies in
planes that have multiple ridges, where the ridges compete
in modifying the plane’s position. In this case, we allow
only the longest ridge to modify the position, and ignore
the effects from others.

4.1.3 Coarse-to-fine iteration

The planar roof patch extraction executes in a coarse-to-fine
manner, as demonstrated in Figure 5. In particular, we fit
planes to the input points, make orientation alignment and
placement alignment to the plane primitives, discard points
already associated with existing plane primitives, and then
iterate through these steps with three modifications until no
more plane primitives can be found by planing fitting:

1. We loosen the plane-fitting criterion to accept smaller
plane patches. Specifically, normal variance allowance
α is increased and the minimum number of points re-
quired to validate a plane primitive K is reduced.3

3Empirically, α remains π/12 while K is reduced by half in each iter-
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Figure 5. Coarse-to-fine planar roof patch extraction

2. In plane-fitting, instead of randomly picking region-
growing seed, we start from points with normals that
are close to normal n(θ, φ),∀(θ, φ) ∈ CΘ×CΦ. These
points have great potential to grow into planes con-
forming to existing orientation regularity constraints.

3. In alignment steps, the new plane primitives
first attempt to snap to existing constraint sets
{CΘ, CΦ, CH, CS}. Clustering is performed only for
primitives that cannot align to the existing constraints
given a distance threshold. New cluster centers are
combined with existing centers to form regularity
constraints for the next iteration.

These modifications are driven by two observations:
first, large plane primitives are more reliable in produc-
ing global regularity constraints, and thus we begin with
large primitives and require small primitives to be snapped
to large primitives if possible (modification 3); second, the
regularity constraints detected from large primitives can
greatly improve the robustness of plane fitting for small
patches (modification 2).

4.2. Boundary segment production

Given a set of plane primitives as shown in Figure 4 top
right, we create initial boundary segments for each planar
roof patch with help of roof-boundary regularities, and per-
form segment height alignment and segment position align-
ment based on boundary-boundary regularities.

4.2.1 Boundary segment initialization

As discussed in Section 3.2, most boundary segments in
2.5D building models conform to the roof-boundary reg-
ularities, i.e., when projected on the x-y plane, bound-
ary segments are either orthogonal or parallel to the nor-
mals of their owner planes. On the other hand, boundary
segments represent the borders of roof patches, and thus
bound the patch content, i.e., points associated with the
roof plane. Considering a planar roof patch Pi and the set
of points associated with it denoted as Vi; we can com-
pute a rectangular bounding box Ri of point projections
P(Vi) on the x-y plane, with Ri’s orientation following

ation, from 200 to 25.

oi = (cos(φ(ni)), sin(φ(ni)))
T . The segment set Bi is

initialized by back projecting Ri’s edges onto Pi.
Given that the plane normals are already aligned to a

small set of orientation constraints CΦ, the x-y directions of
boundary segments fall into a few 2D directions, which can
be regarded as building-scale principal directions [13, 14].
In the special case where |CΦ| = 1, the boundary segments
are in two orthogonal x-y directions, forming rectilinear
contours for building models [7].

4.2.2 Segment height alignment

We now apply segment height alignment to horizontal
boundary segments. Segment-height-equality is discovered
and enforced by a clustering method similar to previous
alignment steps with two additional rules:

1. Heights of boundary segments from the same plane
patch cannot belong to the same cluster, since snapping
them together risks making the roof patch degenerate.

2. For each plane pair (Pi, Pj) that creates a ridge ri,j ,
the boundary segments opposite to ri,j (e.g., b2 and b5
in Figure 3) are tested with a relaxed criteria, because
there is high probability of a reflection-symmetry.

We mark a boundary segment as “fixed” if its height is
snapped to a cluster with more than one element. The po-
sition of each fixed segment is determined accordingly by
substituting the modified height value into the plane equa-
tion. These positions act as placement constraints Cp.

4.2.3 Segment position alignment

Segment position alignment is applied to the remaining
boundary segments including both non-horizontal segments
and horizontal segments that are not marked as “fixed” in
the previous step. Positions of these segments first attempt
to snap to elements in Cp, and only join the position cluster-
ing procedure when the snapping attempt fails.

4.3. Model Generation

With planar roof patches and their boundary segments
generated and aligned to the global regularities, we can eas-
ily reconstruct a 2.5D building model by combining roof
patches and vertical facades, as shown in Figure 4 bottom
left. The facades are produced from boundary segments
connecting roof patches to the ground, while rectangular
roof patches are pruned by neighboring elements including
both roof patches and facades.

5. Experimental Results
We first compare our method with two existing ap-

proaches (i.e., 2.5D dual contouring [14] and a primitive-
based method [5]). Figure 2 shows a qualitative comparison
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Figure 6. A comparison of geometric fitting errors (i.e., squared
distances from input points to the model surfaces) between models
created by four different approaches.

Metric Our method 2.5D
DC [14]

Primitive-
based

method [5]

Manual
creation

Triangle # 130 214 89 78
Ave. dis2 0.012 0.016 0.018 0.058

Outlier ratio 0.9‰ 10.0‰ 11.1‰ 17.3‰
Table 1. Quantitative results for the comparison in Figure 6

between these methods. Our model has the most similar vi-
sual appearance to manual creation, because it conforms to
the most global regularities that characterize the intrinsic
structure of building models. In contrast, 2.5D dual con-
touring only considers boundary direction similarities by in-
troducing the principal direction snapping algorithm, while
[5] detects primitives but does not deal with the relations
between them. In addition, we quantitatively compare the
three methods using the metrics shown in Figure 6 and Ta-
ble 1. While our result shows comparable triangle number
and average squared distance compared with previous ap-
proaches, we significantly reduce the outlier ratio (i.e., the
ratio of points with squared distances greater than 0.25m2),
because our approach can robustly fit small plane primitives
through iterations with global regularities detected and up-
dated progressively.

We further test our method on several LiDAR scans
of buildings in the city of Atlanta, as illustrated in Fig-
ure 7. The input contains aerial LiDAR point cloud with 17
samples/m2 resolution (first column). Planar roof patches
and their boundary segments are detected and aligned with
global regularities learnt from them (second column). 2.5D
building models are reconstructed from these primitives by
pruning the roof patches (see examples in the last three
rows) and creating vertical facades from boundary seg-

ments (third column). Given the aerial imagery as reference
(fourth column), our results are more “realistic” than the
2.5D dual contouring results (last column). Table 2 shows
the statistics of the experiments in Figure 7. Computation
time is measured on a laptop with Intel i-7 CPU 1.60GHz
and 6GB memory. More experimental results can be found
in the supplementary video.

6. Conclusion
In this paper, we define global regularities in 2.5D build-

ing models to characterize the intrinsic structure of build-
ing models. We present an automatic algorithm to discover
and enforce global regularities through a series of alignment
steps. Our system creates 2.5D building models with high
quality in terms of both geometry and visual judgement.
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Model Point
#

Plane
# |CΘ| |CΦ| Ridge

# |CH| |CS | Hor.
segment #

Seg.
h-cluster #

Non-hor.
segment #

Seg.
p-cluster #

Triangle
#

time
(s)

First row 3349 6 1 1 3 3 2 6 1 12 5 48 7.1
Second row 5603 6 2 1 3 3 2 6 2 12 6 48 6.8
Third row 4549 4 1 2 2 1 2 4 1 8 4 28 3.6
Fourth row 6143 13 3 1 5 3 3 18 7 24 13 110 16.6
Fifth row 6920 14 3 1 7 3 3 16 2 28 10 112 39.6

Table 2. Statistics of the experiments in Figure 7. Column 3 - 12 show statistics of the intermediate results. Since the size of constraint sets
is considerably smaller than the number of primitives (in bold), the solution space (and thus the complexity) of the modeling problem is
reduced significantly.
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