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Abstract The computation of exact geodesics on trian-
gle meshes is a widely used operation in computer-aided
design and computer graphics. Practical algorithms for
computing such exact geodesics have been recently pro-
posed by Surazhsky et al (2005). By applying these ge-
ometric algorithms to real-world data, degenerate cases
frequently appear. In this paper we classify and enumer-
ate all the degenerate cases in a systematic way. Based on
the classification, we present solutions to handle all the
degenerate cases consistently and correctly. The common
users may find the present techniques useful when they
implement a robust code of computing exact geodesic
paths on meshes.

Keywords Exact geodesic computation · Degenerate
cases · Robustness

1 Introduction

An exact geodesic between two points in a 2-manifold
mesh is a union of line segments within the mesh which
connects the two points and is locally length-minimized.
The computation of exact geodesic paths on triangle
meshes is a widely used operation in computer-aided de-
sign and computer graphics.

In [5], a practical implementation of the DGP algo-
rithm in [3] is proposed for computing exact geodesics
from a source point to one or all other points efficiently.
In the worst case the DGP algorithm has complexities of
O(n2) space and O(n2 log n) time, while in practice the
algorithm is observed to run in sub-quadratic time.

The implementation in [5] can be regarded as a generic
algorithm, i.e., it is guaranteed to be correct with generic
situation, while how to handle degenerate cases is not
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Fig. 1 Geodesic computation with a prescribed source point;
points on the mesh are colored according to the geodesic dis-
tance to the source point.

reported. In this paper we enumerate all the degener-
ate cases risen from implementation in [5] and show that
in most cases with arbitrarily shaped triangles, the de-
generate cases are frequently appears. An example is il-
lustrated in Fig. 1. The mesh used in Fig. 1 has 2000
faces, 6000 edges and 1028 vertices. The triangles in the
mesh are arbitrarily shaped, including both obtuse and
acute triangles. Given a prescribed source point, there
are totally 8807 cases handled, in which 2583 cases are
degenerate, about 29.33%. Some degenerate cases are il-
lustrated in Fig. 4.

In geometric computation, degenerate cases will in-
crease the instability of the generic algorithm. Theoreti-
cally, degenerate cases can be handled by using the sym-
bolic perturbation schemes [1]. Though it is a powerful
tool, this scheme may not be applicable in the computa-
tion of exact geodesic paths. First, symbolic perturbation
requires exact arithmetic, with which many users are not
familiar. Second, using symbolic perturbation does not
solve the degenerate case itself, but an arbitrarily-chosen
nearby general case. Topology-oriented implementation
is another way to handle degenerate cases [4]. However, it
only guarantees to output a topology-consistent solution
which may not be the desired topology-correct one.

In this paper, to develop a robust and fast exact
geodesic algorithm, we present a systematic solution to
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Fig. 2 6-tuple representation (b0, b1, d0, d1, σ, τ) of the inter-
val.

efficiently handle all the degenerate cases with floating
point computation [6]. By doing so, geometric predicates
are treated consistently and thus the implemented algo-
rithm is robust.

2 Review of the exact geodesic algorithm

We follow the notation in [5] to quick review the DGP
algorithm [3]. Shortest paths on mesh are rays emanat-
ing from the source vertex along tangent directions. In-
terior to a triangle, a shortest path must be a straight
line. When crossing an edge, a shortest path must be
a straight line when the previous face is unfolded into
the plane containing the next face. The only vertices
(called geodesic vertices below) that a shortest path can
pass through are either boundary vertices or the vertices
whose total surrounding angle is larger or equal to 2π.
The basic idea of the DSP algorithm is to partition each
mesh edge into a set of intervals. Refer to Fig. 2. Each
interval is encoded by a 6-tuple (b0, b1, d0, d1, σ, τ). b0, b1

are parameters measuring distance along the edge. The
unfolded position s of the geodesic vertex is encoded by
its distances d0, d1 to the interval endpoints. A binary
direction τ is used to specify the side of edge on which
the source lies. σ is the length of the path from s back
to the source vs.

Given an interval I on an edge e0, its distance field is
propagated across an adjacent face to define new poten-
tial intervals on the two opposing edges e1, e2. Refer to
Fig. 3. Three general cases exist for interval propagation.
According to different cases, different new intervals are
formed on the opposing edges. If intervals already ex-
ist on the opposing edges, the new interval may intersect
some old ones. If two intervals intersect with a nonempty
region δ, a quadratic equation

Ap2 + Bp + C = 0 (1)

is solved to determine a new position p ∈ δ such that the
updated ranges of the two intervals I and I ′ are (b0, p)
and (p, b′1), respectively.

Starting from the source point, the DSP algorithm
propagates distance information in a continuous Dijkstra-
like fashion. When new intervals are created, they are
placed in a priority queue sorted by minimum distance
back to the source. When an interval is popped from the
queue, interval propagation is performed in one of the
three cases showing in Fig. 3. The reader is referred to
[5] for full details of this algorithm.

3 Degenerate cases

In the exact geodesic algorithm [5], two types of degen-
eracies occurs in interval propagation:

1. Degeneracies on geometric intersection. Refer to Figs.
3 and 4. These degeneracies rise from the determina-
tion of intersection region between the wedge and the
line segments e1 and e2;

2. Degeneracies on geodesic discontinuities. Due to the
numerical errors in floating point computations, the
solution of equation (1) often generates small gaps or
overlaps between the new resulted intervals; this gives
rise to geodesic discontinuities along the intervals on
the edge.

3.1 Degeneracies on geometric intersection

Basically, there are 5 degenerate cases in this class, as
shown in Fig. 4:

1. The position of s lies on edge e0. This case can hap-
pen if the interval is created on e1 in the case of Fig.
3(c);

2. Three points s, b0, v1 are in a straight line. This makes
the new interval on the edge e1 disappear in the case
of Fig. 3(b);

3. Three points s, b1, v1 are in a straight line. This is a
symmetric case of case 2;

4. Four points s, v0, b0, v1 are in a straight line. This also
means that points v0 and b0 coincide. In this case, the
new interval on the e1 in the case of Fig. 3(b) must
be treated as the new interval on the e1 in the case
of Fig. 3(c);

5. Four points s, v1, b1, v1 are in a straight line. This is
a symmetric case of case 4.

Notice that there are some degenerate cases com-
posed of several basic cases. For example, referring to
Fig. 4, if three points s, b0, v0 coincides, the basic degen-
erate cases 1,2,4 occur simultaneously. Different degen-
erate cases must awake different procedures to process.
Treating degenerate cases in random order will result in
catastrophic failures in the algorithm. In Section 4.1, we
present a concise decision procedure to properly handle
all the degenerate cases.
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Fig. 3 Interval propagation. (a)One new interval created. (b) Two new intervals created. (c) One new normal interval and
two additional intervals (in red) created.
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Fig. 4 Degenerate cases on geometric intersection; the shaded area indicates the wedge range of b0 → s → b1.

I’

II i I j

I i I jI i I j
newnew

(a) The new created interval

(b) Existing intervals

(c) Preprocessing existing intervals

Iupdated
I i I j

I i−1

I inside

I j−1

(d) Finally updated intervals

I’.b0 I’.b1

Fig. 5 Degeneracies on geodesic discontinuities.

3.2 Degeneracies on geodesic discontinuities

After the determination of intersection region between
wedge b0 → s → b1 and edges e1, e2, new intervals are
created. Refer to Fig. 5. Suppose that a new interval I ′

with range (I ′.b0, I
′.b1) is created on edge e on which

there already exists a set of intervals I = {I0, I1, · · ·}
sorted by positions on edge, Ii−1.b1 ≤ Ii.b0 < Ii.b1 ≤
Ii+1.b0. If the intervals I ′ and Ii ∈ I have a nonempty
intersection region δ = I ′∩Ii, a quadratic equation needs
to be solved to determine the minimal distance for points
in δ and update the intervals I ′ and Ii along edge e. Let

Iupdated = {I0, I1, · · ·} be the set of updated intervals on
e, four degenerate cases may occur:

1. Tiny intervals appear in I;
2. Two consecutive intervals in I intersects;
3. Two consecutive intervals in I separate by a tiny gap;
4. The geodesic distances at the common endpoint of

two consecutive intervals are not the same.

Theoretically, if exact arithmetic is used, these cases will
not happen or can be regarded as errors. However, in
practice, when float-point computation is used and nu-
merical errors are unavoidable, these cases do occur and
we regard them as degenerate cases. The solution to han-
dle these degeneracies is presented in Section 4.2.

4 Handling degenerate cases

In geometric algorithms, testing degenerate cases relies
heavily on the incidence decisions such as whether a
point lies on a line or two points coincide [2]. Incidence
decisions contribute to geometric predicates. A predi-
cate is a numerical primitive computation whose value
impacts the flow of control of an algorithm. To evalu-
ate predicates with float-point computation, we present
a systematic solution in the following subsections. The
pseudo-code of the overall algorithm is as follows.
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Fig. 6 The flowchart of the decision system to handling degeneracies on geometric intersection.

Algorithm 1
1. Initialize a priority queue Q with a given

source point in the mesh;
2. while Q is not empty
2.1. pop off the top element q from Q;
2.2. establish the local system as shown in fig. 3

based on q = (b0, b1, d0, d1, σ, τ);
2.3. find the intersection of the wedge b0 → s → b1

and e1, e2; handle the degeneracies using the
solution presented in Sec. 4.1;

2.4. update intervals on e1, e2 and Q using the
solution presented in Sec. 4.2;

2.5. if new intervals created
2.5.1. add them into Q;

4.1 Handling degeneracies on geometric intersection

Suppose that we implement the vector operation in a
C++ class. Given a point (or a vector) p, p.x, p.y, p.z
retrieve its three coordinates. p.length() return the value
of the vector length. p · q returns the value of the inner
product of two vectors p, q. p×q returns the vector of the
cross product of p, q. abs(c) returns the absolute value of
c. Denote the machine precision by ε. Refer to Fig. 3.
The following rules consist of incidence decisions:

– If (s− b0).length() < ε, points s and b0 coincide;
– If (s− b1).length() < ε, points s and b1 coincide;
– If abs(((s−b0)×(b0−v1)).z) < ε, three points s, b0, v1

lie on a straight line;

– If ((b1 − s)× (v1 − b1)).z > ε, the vertex v1 lies right
of the wedge and the new interval will be on the e1.
That means case (a) in Fig. 3 occurs.

– If ((b0 − s)× (v1 − b0)).z < −ε, the vertex v1 lies left
of the wedge and the new interval will be on the e2.

– If ((b0 − s) × (v1 − b0)).z > ε and ((b1 − s) × (v1 −
b1)).z < −ε, the vertex v1 lies inside the wedge formed
by two rays b0 − s and b1 − s. That means case (b)
in Fig. 3 occurs;

Given the above rules, our goal is to design a decision
procedure that reduce all possible decisions to a set of
predicates as few as possible, which also guarantee to
output a consist and right decision on choosing the order
of different degenerate cases. We present such a non-
trivial decision tree in Fig. 6. Given the rules of incidence
decisions and the decision tree as shown in Fig. 6, the
code that can robustly and consistently handle all the
degenerate cases in this class is readily to build.

4.2 Handling degeneracies on geodesic discontinuities

Here we present a robust solution to handling degenera-
cies on geodesic discontinuities. The presented solution
may seem unnecessarily complicated at the first glance.
However, it not only give us a concise way of program-
ming, but also it makes verification and error estimation
possible and easy to realize at each step by providing de-
terministic status to check. The pseudo-codes handling
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degeneracies on geodesic discontinuities (ref. the Step 2.3
in Algorithm 1) are as follows.
Algorithm 2
1. for all Ii ∈ I
1.1. let interb0 = max{Ii.b0, I

′.b0}, and
interb1 = min{Ii.b1, I

′.b1};
1.2. if interb0 < interb1
1.2.1. if Ii.b0 < interb0
1.2.1.1. separate Ii at interb0;
1.2.1.2. let Ii

new = (Ii.b0, interb0) and
Ii = (interb0, Ii.b1);

1.2.1.3. insert Ii
new into I;

1.2.2. if interb1 < Ii.b1

1.2.2.1. separate Ii at interb1;
1.2.2.2. let Ii

new = (Ii.b0, interb1) and
Ii = (interb1, Ii.b1);

1.2.2.3. insert Ii
new into I;

2. for all Ii ∈ I which completely inside I ′

2.1. update Ii and I ′ by solving equation (1);
3. Remove tiny intervals in I;
4. Sew small gaps in I;
5. In I merge neighbor intervals with the

same geodesic vertex;
6. (Optional) verification of I if needed.

Given the newly created interval I ′ and a set of al-
ready existed intervals I = {I0, I1, · · ·} on edge e, we
first process all intervals in I such that for each interval
in I, it is either completely outside range I ′ or completely
inside I ′. This process is illustrated in Fig. 5c and Step
1 in Algorithm 2 serves this need.

At Step 2 in Algorithm 2, denote the sorted subset
by Iinside whose elements are completely inside the range
of the new interval I ′. We update intervals in Iinside in
turn. Given Ii ∈ Iinside and I ′, a quadratic equation
is solved. According to the solution, Ii = (Ii.b0, Ii.b1)
may disappear or shrink into a smaller interval Iinew =
(Iinew.b0, Iinew.b1). In the latter case, we divide interval
I ′ = (I ′.b0, I

′.b1) into two parts, i.e., I ′new = (I ′.b0, Iinew.b0)
and I ′ = (Iinew.b1, I

′.b1), and insert I ′new into I. Then
we continue to process Ii+1 with I ′ until all elements in
Iinside are processed.

Finally, we get an updated interval set I. It is not dif-
ficult to check that given the above rules, the elements in
I cannot be intersected to each other. Due to numerical
computation, tiny intervals and small gaps may occur.
Refer to Fig. 5c and Steps 3,4,5 in Algorithm 2, the fol-
lowing rules handle these degeneracies:

1. Detect and remove tiny intervals. ∀Ii ∈ I, if Ii.b1 −
Ii.b0 < ε, merge Ii with Ii−1 or Ii+1;

2. Detect and sew small gaps. If Ii+1.b0 − Ii.b1 < ε, let
Ii+1.b0 = Ii.b1 be the midpoint of the original Ii+1.b0

and Ii.b1;
3. Merge intervals with the same source point. For any

pair Ii and Ii+1, let the unfolded position of geodesic
vertex be si and si+1, respectively. If (si−si+1).length()
< ε, merge intervals Ii and Ii+1.
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 Fig. 7 An exact geodesic path over the head model with two
different resolution meshes.

The biggest advantage of Algorithm 2 is the result of
every step is predictable and thus code verification is
easy to check.

5 Results

By handling all the degenerate cases consistently and
correctly, the implementation of the exact geodesic al-
gorithm [3,5] is very robust. In this section, we present
some testing examples with the models of various dis-
tribution of triangles. In each example, the small green
sphere indicates the position of the prescribed source
point with which a distance field is built by comput-
ing the length of geodesic paths from the source to all
other points on meshes. By tracing the gradient of the
distance field, a geodesic path from the source to a des-
tination point on mesh is also shown in each example.
In all examples shown here, the degeneracy rate is mea-
sured by the percentage of degenerate cases over all the
cases. Table 1 summarizes the degeneracies tests on all
the examples.

In Fig. 7, a head example with two different resolu-
tion models is presented. Both models consist of irregu-
lar triangles. On both models, the source and destination
points are the same and the geodesic paths connecting



6 Yong-Jin Liu et al.

Table 1 Degeneracies tests on all the examples; the degener-
acy rate is measured by dividing the degenerate cases resulted
from geometric intersection over all the cases.

model face num. all cases degeneracy rate

fig7a 2000 8807 29.33%
fig7b 5000 23221 31.13%
fig8 47415 194851 33.25%
fig9a 12436 49697 32.40%
fig9b 11000 49028 29.22%
fig9c 11774 63992 27.96%
fig9d 12000 49621 31.41%
fig9e 21152 82397 35.27%

them are shown. In Fig. 8, the test is performed on the
maxplunck head model. This model possesses different
mesh resolution over different regions. On this model, a
geodesic path crossing regions of different resolutions is
shown. These two examples shows that (1) more smaller
the triangles are, more degenerate cases occurs; (2) more
irregular the triangle distribution is, more degenerate
cases occurs.

We also test the implementation on a diversity of
models with arbitrary triangles. Four typical examples
are shown in Fig. 9. These examples show that real-
world data is likely to contain a large number of degen-
eracies. By providing a concise and consistent solution to
all the degenerate cases, the users may find the technique
presented in this paper useful when he/she implements
a robust code to compute exact geodesic over triangle
meshes.

6 Conclusions

Geometric algorithms are sensitive to degeneracies risen
from special positions of several incident geometric ob-
jects. Although the general technique [1,4] exists to han-
dle the degeneracies theoretically in any geometric al-
gorithms, certain particular applications permit much
more efficient ways to handle degeneracies. In this pa-
per we classify and enumerate all the degenerate cases
in the computation of exact geodesics on triangle meshes.
Based on the classification, we present a systematic treat-
ment to handle all the degeneracies consistently. We also
show by examples that the real-world data is likely to be
degenerate. The common users may find the presented
technique useful to obtain a robust implementation of
the fast exact geodesic algorithm.
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 Fig. 9 The computation of exact geodesics over the diverse models with arbitrary triangles.


