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Abstract

2.5D building reconstruction aims at creating building
models composed of complex roofs and vertical walls. In
this paper, we define 2.5D building topology as a set of
roof features, wall features, and point features; together
with the associations between them. Based on this defini-
tion, we extend 2.5D dual contouring into a 2.5D modeling
method with topology control. Comparing with the previ-
ous method, we put less restrictions on the adaptive simpli-
fication process. We show results under intense geometry
simplifications. Our results preserve significant topology
structures while the number of triangles is comparable to
that of manually created models or primitive-based models.

1. Introduction
Building reconstruction lies in the heart of urban model-

ing which is the basis of various applications such as ur-
ban planning, virtual city tourism, and computer games.
Many research efforts have addressed the problem of cre-
ating building models from city scans captured from nadir
perspective, which are known as 2.5D LiDAR point clouds
in [14]. In particular, most of these approaches tend to pro-
duce building models composed of complex roofs and ver-
tical walls. These facts determine the 2.5D characteristic of
typical building modeling problem.

Although most previous work focuses on roof pattern
extraction and geometry simplification, the key observa-
tion we have made here is that human vision tend to be
more sensitive to building topology rather than building ge-
ometry. Intuitively, building topology determines the ex-
istence of structural pieces and the connections between
them; while building geometry describes where these struc-
tural pieces appear in the three dimensional space. We no-
tice that humans are more aware of changes in topology
even if the related structural piece is small. For example,
Figure 1(c,d) demonstrate two building models created tar-
geting to achieve more precise geometry and more precise
topology respectively. Although the left model fits the in-

(a) Input LiDAR

(c) Geometrically more precise (d) Topologically more precise

(b) Unsimplified model

Figure 1. Building models reconstructed targeting to obtain (c)
more precise geometry and (d) more precise topology respectively.
Compared with (a) the input LiDAR and (b) unsimplified building
model, the missing of the chimney makes the former one visually
less convincing than the latter one.

put point cloud better under typical geometrical error mea-
surements (e.g., average quadratic distance), it is visually
less convincing than the right one because a roof piece (the
chimney) is missing.

The topology issue in 2.5D building modeling is first
noticed by Zhou and Neumann [14] and alleviated by
introducing a topology test in the 2.5D dual contour-
ing method. Their adaptive simplification process first
collapses quadtree cells and optimizes an anchor point
completely based on geometric errors without considering
building topology; then rewinds the collapse operation if the
topology test reveals a possible topology change. This strat-
egy performs well under strong geometric control (i.e., with
a small geometry error tolerance). However, in cases where
simpler models are desired thus looser geometric control is
given, the number of topology test failures increases rapidly
and they become the dominant factor in preventing quadtree
collapse. Figure 2(a) shows such an example in which
topology test frequently detects possible roof layer cracks
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(a) 2.5D dual contouring (b) 2.5D contouring with topology control
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Figure 2. Comparison between (a) 2.5D dual contouring [14] and
(b) our contouring method with topology control. While the
uniqueness of hyper-point in one cell prevents a flexible simpli-
fication in dual contouring, our method detects and controls build-
ing topology beyond the rigid quadtree structure.

and denies the cell collapse; therefore, numerous insignifi-
cant triangles are produced along the thin long roof features
as shown in the closeup. The deep reason behind this prob-
lem is that the optimization process is completely unaware
of building topology. It produces exact one hyper-point1 per
quadtree cell without discrimination. Hence, the most com-
plicated topological structure that can exist in one cell is a
conjunction hyper-point with star-shaped roof boundaries,
as shown in Figure 2(a) bottom right. The adaptive simpli-
fication becomes problematic in producing building struc-
tures with topology that is more complex than a conjunction
hyper-point. Collapse rewind is invoked frequently.

We propose an extension to the 2.5D dual contouring
method to enable building topology control. The key idea
is to maintain multiple hyper-points in one quadtree cell.
Therefore complicated in-cell building topology is allowed.
With this extension, the adaptive model creation procedure
becomes less restrictive, and thus generates simpler build-
ing models in a flexible manner, e.g., Figure 2(b). In partic-
ular, without changing building topology, our method can
produce building models with triangles as few as manually
created models or primitive-based models; while it still pro-
vides a similar geometric optimization scheme as the data-
driven modeling approaches.

Contributions: Given that our method is based on some
previous work, we explicitly specify our novelties as fol-
lows:

1. We formally define three major topology features in
2.5D building models, namely, point features, wall fea-
tures, and roof features. We reveal the topological rela-
tionships between them and present algorithms to de-
tect and control these features.

2. We propose a novel hyper-point clustering algorithm
1A hyper-point is defined as a series of 3D points having the same x-y

coordinates but different z values [14].

which allows the existence of multiple building topol-
ogy features in one quadtree cell. We adapt the geom-
etry optimization and polygon generation methods in
2.5D dual contouring to our topology control scheme.
Our contouring method produces 2.5D models with
less triangles while preserving the building topology.

2. Related Work

We briefly review 2.5D dual contouring, LiDAR-based
building reconstruction algorithms, and volumetric model-
ing approaches with topology control.

2.1. 2.5D Dual Contouring

The 2.5D dual contouring method proposed by Zhou
and Neumann [14] is a robust data-driven approach in cre-
ating 2.5D building models from aerial LiDAR. In their
work, 2.5D characteristic is defined for the building model-
ing problem as “reconstructing polygonal models composed
of detailed roofs and vertical walls”. A 2.5D framework is
proposed which utilizes a quadtree as the supporting data
structure to store Hermite data scan-converted from aerial
LiDAR point clouds. The adaptive simplification is then
implemented by collapsing quadtree cells and optimizing a
quadratic error function (2.5D QEF) to produce exact one
hyper-point in each grid cell. The hyper-point is a 2.5D
representation of a series of 3D points that have consistent
projections on the x-y plane. They are later connected in
two different manners to produce roof polygons and verti-
cal walls respectively.

Although the 2.5D dual contouring method achieves ad-
vantages such as robustness and sharp feature production,
the lack of considering building topology in the optimiza-
tion process makes it difficult to efficiently handle diverse
topology features, as discussed in Section 1.

2.2. LiDAR­based Building Reconstruction

With the fast development of laser scanning technique,
dense aerial LiDAR point clouds become accessible as a
valuable data source in urban reconstruction. Recent re-
search work (e.g.,[5, 9, 13]) has introduced a LiDAR-based
pipeline, which removes unimportant elements then seg-
ments individual building point cloud as the input of build-
ing reconstruction algorithms.

As building reconstruction is the core problem of ur-
ban modeling, there are two typical directions to attack this
problem. The first research direction is to create building
models from a set of pre-defined structural patterns, such as
planes [4, 5, 9, 13], primitives [3, 10], or grammars [7].
These methods focus on reconstructing pre-defined pat-
terns and uncovering the structural relevance between them.
However, they usually lack of universality and accuracy
when dealing with arbitrarily shaped roofs. E.g., Verma et
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Figure 3. Topological features in an unsimplified 2.5D building
model.

al. [9] detects topological relationships only between planar
roof patterns, thus is less general than our approach.

Another research direction is with data-driven methods,
such as 2.5D dual contouring [14]. They provide build-
ing models with optimal geometry regarding the input point
clouds. Our approach belongs to this category. Different
from the state-of-the-arts, we produce a topology control
scheme to enable a more flexible simplification solution.

2.3. Topology Control in Volumetric Modeling

In classic 2D and 3D volumetric modeling methods, the
topology issue is first noticed by Ju et al. [2]. They propose
a topology test mechanism to reject simplification opera-
tions yielding possible topology changes. This mechanism
is later extended to the 2.5D building modeling framework
by Zhou and Neumann [14].

The drawback of creating one vertex per octree/quadtree
cell is noticed by researchers and different approaches have
been proposed to solve this problem, e.g., [6, 8, 11]. Gen-
erally, they all allow one grid cell to have more than one
vertices, in order to track contour components which are
topologically more complicated than a disk (or in 2D, a line
segment) in each cell. Although these methods share some
similarities with our approach, we present two key differ-
ences: first, our method aims at 2.5D building modeling in-
volving hyper-points that cannot be handled in classic 2D or
3D manner; second, we define and process various building
topology features which are more complicated than disk-
like features in classic 2D or 3D space.

3. 2.5D Building Topology

Considering a 2.5D dual contouring process without
adaptive simplification: taking aerial LiDAR data as in-
put, the contouring method builds up a uniform grid with
Hermite data attached; creates one hyper-point (a series
of points that are consistent on the x-y plane) in each cell
by optimizing a quadratic error function; generates surface
polygons and vertical boundary polygons; and produces an
unsimplified 2.5D building model such as the one shown in
Figure 3 left.
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Figure 4. 2.5D building models may contain point features involv-
ing only one wall feature (left). These points are produced around
grid edges (e.g., AB) which detect inconsistent roof layer assign-
ments in two adjacent cells (right).

3.1. Topological Feature Definitions

The first observation we have made for 2.5D building
topology is that a typical building structural piece (e.g., a
chimney) is usually composed of one unique roof patch and
its surrounding walls. Hence we define:

Definition 1 A roof feature R is a connected component
composed of non-vertical surface polygons.

Roof features are the key in determining 2.5D building
structures. Figure 3 utilizes green mesh pieces rendered
with different color intensities to represent multiple roof
features. In particular, neighboring roof patches exhibit a
height gap along their common boundary, which is sealed
up by vertical boundary polygons (grey vertical polygons).
These polygons form wall features that are marked in Fig-
ure 3 by curves with various colors.

Definition 2 Given two roof features R1 and R2, the corre-
sponding wall feature W is defined as the connected com-
ponent composed of vertical boundary polygons adjacent to
R1 and R2 simultaneously. W intersects with R1 and R2

via non-identical roof boundary polylines.

Here we make a slight modification to 2.5D dual con-
touring, that we disable triangulation for polygons. Instead,
we treat surface polygons as quads connecting all four ver-
tices around a grid corner, and produce boundary polygons
with two non-vertical edges linking a pair of neighboring
hyper-points. Therefore, we say a vertical boundary poly-
gon “adjacent” to a roof feature as long as they share a
non-vertical edge. By tracking the consecutive non-vertical
edges, we create one roof boundary polyline regarding each
adjacent wall-roof feature pair (W,Ri), i = 1, 2, denoted
as bi = W ∩ Ri, i = 1, 2. According to definition 2, W is
a valid feature when b1 and b2 are not identical, even if R1

and R2 refer to the same roof patch.

Definition 3 Given a wall feature W which shares two con-
secutive roof boundary polylines b1 and b2 with R1 and R2

respectively, we define point features as hyper-points which
contain b1 and b2’s end points if there is any.

Typically, a hyper-point shared by two neighboring wall
features is a point feature. They are rendered in Figure 3 as
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golden balls connected by vertical lines. Note that definition
3 supports these common hyper-points shared by neighbor-
ing wall features; but is not limited to them. In a special case
shown in Figure 4, the corner points of grid edge AB have
the same roof layer assignment in one adjacent cell (right
cell) but different assignments in another (left cell). Thus, a
vertical boundary polygon is produced to reflect this signif-
icant topology feature. Specifically, R1 and R2 denote the
same roof patch, which is adjacent with W along b1 and b2
representing the upper roof boundary polyline and the bot-
tom roof boundary polyline respectively. Since b1 and b2
are non-identical, W is a valid wall feature. Point feature F
acts as a “folding point” which connects b1 and b2 together
and folds up the boundary of W .

3.2. Connections between Topological Features

By projecting the 2.5D building model onto the x-y
plane, we can view the building topology with a 2D cell
complex representation2. In particular, roof features, wall
features, and point features are projected onto the 2D x-y
plane as 2-cells (regions), 1-cells (polylines), and 0-cells
(points) respectively. High dimensional cells are always
bounded by a set of low dimensional cells.

Given a projection operator P(·) which projects a set of
2.5D objects onto the x-y plane and a boundary extraction
operator ∂(·), we reveal the connections between roof fea-
ture set R, wall feature set W , and point feature set P with
following equations:

P(∂R) ⊆ P(W), for any R ∈ R, (1)
∂P(W ) ⊆ P(P), for any W ∈ W. (2)

These equations can be straightforwardly derived from the
definitions of roof, wall, and point features. On the other
hand, once topological features and their associations ex-
pressed in form of Equation (1) and (2) are fixed, the 2.5D
building topology is determined accordingly.

We demonstrate typical building structures in Figure 5
including standing-alone building blocks, vertically at-
tached blocks, horizontally attached blocks, stair shapes,
and the combinations of these patterns. Nevertheless, our
2.5D building topology representation describes them in a
deterministic and differentiable manner.

In addition, we notice the difference between 2.5D topol-
ogy representation and classic 2D topology representation.
The latter one can be achieved by projecting all building el-
ements onto the x-y plane at first, and treating different roof
layers as multiple region materials. This representation,
however, is problematic in handling wall features connect-
ing the gap within one roof layer (e.g., W1 in Figure 5(d)). It
eliminates such wall features together with the folding point

2Cell complexes are the basic concepts in algebraic topology, see [1]
for detailed discussion.
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Figure 5. 2.5D building topology is represented by topological fea-
tures, and the associations between them that are presented in form
of Equation (1) and (2). Examples include typical building struc-
tures such as (a) individual building blocks, (b) blocks with top at-
tachments, (c) blocks with side attachments, (d) stair-shaped struc-
tures, and (e) combinations of these patterns.

(e.g., P0). In contrast, our topology representation faithfully
preserves all significant 2.5D topology features which are
the basis in our topology control method 3.

4. Contouring with Topology Control
So far we have formally defined 2.5D topological fea-

tures and the associations between them. These mecha-
nisms can be naturally expanded from a uniform grid to a
quadtree. Thus, we present our topology control method to
maintain the 2.5D building topology during quadtree-based
simplification.

4.1. Hyper­points Clustering

The core of the simplification algorithm is to optimize
the geometry of hyper-points based on a 2.5D quadratic er-
ror function [14]. We start with categorizing hyper-points
by the number of its layers.

1. 1-layer points: A hyper-point containing one vertex
is optimized targeting the disk-like geometry in a grid
cell. In most cases, it is connected to vertices created in
its neighboring cells only by surface polygons. Such a
hyper-point is an inner vertex of a roof feature. Thus it
can be safely merged into a neighboring vertex without
changing the 2.5D building topology. The accepting
vertex can be either another 1-layer point or one vertex

3This problem can also be regarded as the result of changing the order
in applying boundary extraction operator and projection operator. As 2D
topology representation projects all elements onto the x-y plane at first, it
attempts to replace P(∂R) in Equation (1) with ∂P(R). This attempt is
problematic because ∂P(R) ̸≡ P(∂R) as P(·) can absorb wall features
such as W1 in Figure 5(d).
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Figure 6. Folding points can be part of a 1-layer hyper-point, a 2-
layer hyper-point, or a multi-layer hyper-point (from left to right).
They are detected and marked as point features before adaptive
simplification starts.

in a hyper-point with more than one layers. The only
exception is a 1-layer folding point, which is connected
to two different layers of a neighboring hyper-point by
a boundary polygon, as shown in Figure 4 and Figure 6
left. In this case the 1-layer point is a point feature,
thus should not be merged into other points.

2. 2-layer points: A hyper-point containing two layers
is a typical roof boundary anchor point, which is opti-
mized with surface geometry and boundary geometry
simultaneously. Typically, it is an inner element of a
wall feature, thus can be merged into another hyper-
point that is connected to it by a vertical boundary
polygon. The accepting hyper-point can be either an-
other typical 2-layer point or a multi-layer point. Sim-
ilar to 1-layer points, folding points can exist within
2-layer points. Figure 6 middle shows such an exam-
ple where the 2-layer point is a point feature. It cannot
be merged in typical manner.

3. Multi-layer points: A hyper-point with more than two
layers can be regarded as a conjunction point of more
than two regions, if we view the problem on the 2D
projection plane and treat roof patches as regions with
different materials. We find that any multi-layer point
is a point feature. Proof is straightforward as they
cannot be the inner elements of wall features; thus al-
ways stand at boundaries of wall features’ 2D projec-
tions. Therefore, multi-layer points can only accept
1-layer points and 2-layer points joining it, but cannot
be merged with other point features.

Since folding points can exist in 1-layer points, 2-layer
points, and multi-layer points, as demonstrated in Figure 6,
they are detected and marked as point features during pre-
processing. The detection algorithm is implemented by
uncovering grid edges with inconsistent roof layer assign-
ments in adjacent cells.

Apart from folding points, we denote typical 1-layer
points, typical 2-layer points, and multi-layer points as p1,
p2, and pm respectively. We introduce a set of hyper-point
clustering operations to merge components connected by

surface polygons, denoted as Φ1→1
S , Φ1→2

S , and Φ1→m
S ,

with following functions:

Φ1→1
S : {p11, p12, . . . , p1n} ⇒ p1∗, (3)

Φ1→2
S : {p11, p12, . . . , p1n}, p2 ⇒ p2∗, (4)

Φ1→m
S : {p11, p12, . . . , p1n}, pm ⇒ pm∗. (5)

Each operation merges a connected component within a
roof feature, and produces one hyper-point (e.g., p1∗, p2∗, or
pm∗) per cluster. In particular, the geometric coordinates of
output hyper-points are obtained by optimizing a 2.5D QEF
matrix which is the combination of QEF matrices from in-
put hyper-points. The third column from p1i ’s matrices are
placed with corresponding matrix column from p2 or pm.
Details of QEF matrices combination can refer to [14].

Similarly, we can define clustering operations for com-
ponents that are connected by vertical boundary polygons:

Φ2→2
B : {p21, p22, . . . , p2n} ⇒ p2∗, (6)

Φ2→m
B : {p21, p22, . . . , p2n}, pm ⇒ pm∗. (7)

These operations merge connected components within a
wall feature.

4.2. Handling Degenerate Cases

Although these clustering operations aim at simplifying
continuous roof and boundary features, they risk in mak-
ing topological features degenerate. For example, with in-
tense geometry simplification, the building structure in Fig-
ure 5(a) may degenerate into a single vertical line with its
top vertex collapsed from R0.

To address this problem, we employ degenerate tests af-
ter each clustering operation. Given f(C) and e(C) as the
number of faces and edges in a cell complex C, we require:

f(R) ≥ 1, for any R ∈ R, (8)
e(P(W )) ≥ 1, for any W ∈ W. (9)

Initially, these two criteria are fulfilled due to Definition 1
and 2. In adaptive simplification phase, for each possible
hyper-point clustering operation, we check all the modified
roof features and wall features, and test if these two criteria
are still satisfied. If any of them is violated, we rewind the
clustering operation.

In practice, we found this degenerate test inefficient be-
cause it involves polygon recreation and topological fea-
ture detection after every clustering operation. We propose
an equivalent criterion which is much easier to be imple-
mented:

Degenerate test A hyper-point clustering operation passes
the degenerate test if the following criterion stays true:

e(∂P(R)) ≥ 3, for any R ∈ R. (10)
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Figure 7. Hyper-point cluster forest viewed from oblique and or-
thogonal perspectives.

The equivalence between this degenerate test and the one
based on Equation (8) and (9) is proved in Appendix A.

Since the degenerate test is irrelevant to typical 1-layer
points, clustering operations based on surface components
are always allowed (i.e., Φ1→1

S , Φ1→2
S , Φ1→m

S ). For clus-
tering among 2-layer points and multi-layer points, we pre-
compute boundaries of roof feature projections, i.e., ∂P(R),
and keep tracking of the edge numbers e(∂P(R)) during
the complete simplification process. Boundary component
clustering operations (i.e., Φ2→2

B and Φ2→2
B ) decrease the

corresponding edge numbers. Once a boundary edge num-
ber is less than 3, the latest operation is rewound.

4.3. Adaptive Contouring

We choose to extend 2.5D dual contouring by allowing
multiple hyper-points in each grid cell of the quadtree Q.
In addition to the adaptive structure of quadtree, we main-
tain a hyper-point forest to allow topology-preserving clus-
tering operations which are detailed in previous sections.
As illustrated in Figure 7, trees in the forest are connected
components that can be simplified via a series of clustering
operations, and each of them is finally represented by its
root (blue and gold hyper-points) whose coordinates are de-
termined by optimizing a 2.5D QEF combining geometric
information from leaf points.

We build this hyper-point cluster forest in a bottom-up
manner. In a quadtree cell c composed of four leaf cells
c0,0, c0,1, c1,0, c1,1, assume each leaf cell has a set of cluster
roots that are available for further clustering (i.e., without
exceeding the geometry error tolerance or violating degen-
erate test). We first traverse all the corner points in c that
are shared by two of the four leaf cells. At each grid corner,
four vertices in adjacent cells are connected via a surface
polygon. We retrieve the roots of these vertices and detect
possible clustering operations based on surface component,
i.e., Φ1→1

S , Φ1→2
S , or Φ1→m

S . Similar approaches can be ap-
plied to minimal grid edges which exhibit roof layer gaps.
They imply boundary-neighborships leading to possible op-
erations Φ2→2

B and Φ2→m
B .

With possible clustering operation detected, we sequen-
tially test them against the geometry error tolerance and the

degenerate test. Since the test sequence may affect the mod-
eling quality, we specify a priority to each clustering oper-
ation. In particular, we assign high priority to Φ1→1

S and
Φ2→2

B ; medium priority to Φ1→2
S and Φ1→m

S ; and low pri-
ority to Φ2→m

B . The reason behind this priority assignment
is that we expect 1-hyper points and 2-hyper points to be
first clustered together to form meaningful geometric pat-
terns (e.g., roof ridges and straight vertical walls), before
they are merged into key features with higher dimensional
topology. As for clustering operations with same priority,
the test sequence is determined by the addition to quadratic
errors in ascending order.

Polygon generation of 2.5D dual contouring is adapted
to the hyper-point cluster forest in a straightforward man-
ner. Considering the unsimplified polygonal model created
from the uniform grid, we replace each point in the model
by the root of its cluster (or the corresponding portion of
the root if that has more layers than the leaf point). Nu-
merous polygons become degenerate and are removed au-
tomatically, e.g., a triangle whose three vertices belong to
the same cluster and thus map to the same root point. A
simple polygonal model with small amount of triangles is
produced which has the same 2.5D building topology as the
unsimplified model.

5. Experiment Results
Figure 8 shows a stadium model reconstructed using dif-

ferent approaches, namely, 2.5D dual contouring (a,b), our
method (c,d), manual creation (e), and plane-based method
such as the one proposed in [12] (f). In particular, we vary
the geometry error tolerance δ in order to trade-off between
model scale and fitting quality. The relation curve between
δ and the number of triangles produced by different ap-
proaches is illustrated in Figure 8(g). Quantitative measure-
ments are given in Table 1. With error tolerance δ increas-
ing, our method constantly decreases the triangle number
of reconstructed models. Reasonable cost is paid in fitting
quality as the trade-off. On the contrary, 2.5D dual contour-
ing reaches the simplification barrier around 3000 triangles.
This barrier can be explained by the last column of Table 1,
showing the percentage of unsuccessful collapses caused by
topology test among all unsuccessful collapses. Many of
them happen in small cells that create trivial triangles as
shown in Figure 8(a,b) closeups.

Figure 9 shows the building reconstruction for a 5km-by-
7km urban area of Denver, from 73M input aerial LiDAR
points with 6 samples/sq.m. resolution. We employ the ur-
ban modeling pipeline in [13] to extract individual building
patches, and test our method, 2.5D dual contouring, and
a plane-based method independently. We utilize a fairly
large error tolerance for both our method and 2.5D dual con-
touring. Our method successfully reconstructs 2,099 2.5D
building models within 5 minutes on a consumer level lap-
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Figure 8. A stadium model created using (a,b) 2.5D dual contouring [14], (c,d) our method, (e) manual creation, and (f) plane-based
approach [12]. The relation curve between error tolerance and the triangle number of reconstructed models is illustrated in (g). With larger
geometry error tolerance given, our method can always produce simpler models with less triangles; while the overstrict topology test in
2.5D dual contouring creates numerous trivial triangles along thin roof features shown in closeups of (a,b).

Figure 9. 2,099 building models are created for an urban area in
Denver using (top) our method, (middle) 2.5D dual contouring,
and (bottom) plane-based method. Our method produces as few
triangles as the plane-based method while recovering and preserv-
ing the topological features in each building structure.

top (Intel i-7 CPU 1.60GHz with 6GB memory). We pro-
duce 227,566 triangles for the building models which are

rendered in the top rows of Figure 9. Our output triangle
number is comparable to plane-based results (181,752 tri-
angles rendered in the bottom row). However, unlike the
plane-based method, our method detects and preserves 2.5D
building topology, thus avoids producing cracks and incon-
sistencies between building blocks. E.g., the roof of the
large structure shown in the bottom left closeup intersects
with small features on top of it; while our method does not
have such problem. The middle row of Figure 9 shows 2.5D
dual contouring result, it produces twice as many triangles
(551,341 triangles) as the other two approaches.

Since the scale of our result is inversely proportional to
geometry error tolerance δ. It is beneficial to study the evo-
lution of building model with respect to δ. In particular,
we create 2.5D building models for the same LiDAR point
cloud using an exponentially increasing δ, shown in Fig-
ure 10. Although the model geometry constantly becomes
simpler, the building topology is faithfully preserved. Even
in the extreme simplification case where δ = ∞, we gener-
ate a model with 32 vertices and 52 triangles, which is the
smallest amount of vertices and triangles that can represent
the building topology of this model. 4

6. Conclusion
We define 2.5D building topology as a combination of

topological features and the associations between them. We
propose convenient tools to change model geometry with-
out modifying the topology. In addition, we extend 2.5D
dual contouring with our topology control strategies, to
achieve a more flexible adaptive structure for simplification.

4Visit our project homepage for more results and demonstrations:
http://graphics.usc.edu/~qianyizh/projects/buildingtopology.html
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δ

1.0 2.0 4.0 8.0 ∞

Tri. # = 169 Tri. # = 113 Tri. # = 80 Tri. # = 63 Tri. # = 52

...

Figure 10. Model evolution with error tolerance growing from 1.0 to infinite.

Geometry error tolerance
Our method 2.5D dual contouring [14]

Triangle # Ave. distance2 Triangle # Ave. distance2 Topology test failure rate
δ = 0.25 24161 0.0157 26776 0.0156 3.02% (82 out of 2713)
δ = 1.00 8864 0.0202 11280 0.0182 11.83% (109 out of 921)
δ = 4.00 3290 0.0849 5191 0.0316 39.10% (149 out of 381)
δ = 16.00 1374 0.1259 3644 0.0988 76.30% (161 out of 211)
δ = 64.00 766 0.4812 3315 0.2104 90.45% (161 out of 178)

Table 1. Quantitative comparison between our method and 2.5D dual contouring using the experiment shown in Figure 8. The last column
reports the percentage of cell collapses rejected by topology test among all rejected collapses. The topology test becomes dominant in 2.5D
dual contouring with large error tolerance.

Our outputs have the same representability as models cre-
ated by 2.5D dual contouring, but contain fewer vertices and
triangles.
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Appendix A
Proof of equivalence between (8)+(9) and (10):

First, we notice that all three equations stand true in the
initial unsimplified model.

After a clustering operation, if both equation (8) and (9)
are true, for each R ∈ R, we have f(P(R)) = f(R) ≥ 1.
I.e., P(R) contains at least one 2-cell. Thus, the boundary
of P(R) contains at least 3 edges, e(∂P(R)) ≥ 3.

Conversely, when Equation (10) is true, P(R) has at least
one 2-cell. Therefore, f(R) = f(P(R)) ≥ 1, i.e., (8). As
for a wall feature W with |∂P(W )| ≥ 2, it is bounded by
two point features, and (9) is true by definitions of hyper-
point clustering operations. Now we consider a wall feature
W with |∂P(W )| ≤ 1 (e.g., W0 in Figure 5(d) and W1 in
Figure 5(b)), P(W ) is a close loop on 2D space. It divides
R into partition Rin and Rout, where Rin ̸= ∅. We have:

P(W ) = ∂
∑

R∈Rin

P(R). (11)

Since the right part sums at least one 2-cell before bound-
ary extraction, the boundary of the cell complex contains at
least 3 edges, i.e., e(P(W )) ≥ 3. �
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