A Streaming Framework for Seamless Building Reconstruction
from Large-Scale Aerial LiDAR Data

Qian-Yi Zhou
University of Southern California

gianyizh@usc.edu

Ulrich Neumann
University of Southern California

uneumann@graphics.usc.edu

Figure 1. We construct the whole urban model of Atlanta from 683M LiDAR points in a seamless manner, using our streaming building
reconstruction program. Right: four closeups of the urban model, showing (a) an area with large flat structures; (b) a downtown area; and
(c,d) two residential areas.

Abstract

We present a streaming framework for seamless building
reconstruction from huge aerial LiDAR point sets. By stor-
ing data as stream files on hard disk and using main memory
as only a temporary storage for ongoing computation, we
achieve efficient out-of-core data management. This gives
us the ability to handle data sets with hundreds of millions
of points in a uniform manner. By adapting a building mod-
eling pipeline into our streaming framework, we create the
whole urban model of Atlanta from 17.7GB LiDAR data
with 683M points in under 25 hours using less than 1GB
memory. To integrate this complex modeling pipeline with
our streaming framework, we develop a state propagation
mechanism, and extend current reconstruction algorithms
to handle the large scale of data.

1. Introduction

With the fast development of remote sensing instru-
ments, large LiDAR (light detection and ranging) data sets
have become much easier to acquire, and thus are more
commonly used to generate building models in urban areas.
These building models are very useful for a broad variety
of applications such as urban planning, virtual city tourism,
disaster simulation, and computer games. Although many
research efforts have addressed the building reconstruction

problem, most of these methods need to load all the LIDAR
data into the memory before processing. Therefore, there is
a conflict between the increasing size of data sets and the
limitation of computer hardware.

A common way to alleviate this problem is to partition
the whole data set into small tiles and process them one at
a time. By merging building models generated from differ-
ent tiles, this approach can produce 3D models from large
LiDAR data sets. However, it may introduce artifacts along-
side the boundaries between tiles. Although these boundary
effects can be moderated by introducing extra processing
on boundary regions, the additional processing for tile par-
titioning, boundary handling and modeling merging is in-
efficient, tedious and may introduce ambiguity (e.g. large
buildings that span the intersections of multiple tiles).

We present a framework to handle extremely large data
sets in a seamless manner, meaning that our method needs
no special treatment for tile-boundaries. Our general ap-
proach is to adapt existing building reconstruction algo-
rithms to an out-of-core execution architecture. The out-of-
core architecture benefits from a streaming process which
utilizes free hard-disk space as main storage while allocat-
ing main memory only as temporary space to store data
for ongoing computation. In other words, our streaming
process takes data as a stream (usually, a disk file) - each
pipeline component reads from an input stream, loads nec-

essary data in-core, processes it; and once data is no longer
needed for further processing, it is written into an output
stream.

We demonstrate our streaming building reconstruction
process by automatically extracting the entire urban models
of three different cities. The largest data set we have pro-
cessed is Atlanta LiDAR data which contains 683M points
stored in a 17.7GB disk file. Our program generates 1.12M
triangles to represent the buildings and 8.78M triangles for
terrain, in under 25 hours of unattended processing using
less than 1GB memory. As a comparison, an in-core pro-
gram would need more than 100GB memory to process
this data in one pass. Our resulting Atlanta urban model
is shown in Figure 1.

We developed our streaming architecture to support
the automatic building reconstruction pipeline described
in [17]. This pipeline has the property that most of the op-
erations have spatial locality, i.e. most computations only
require data access within a small local area and are insen-
sitive to global variables (e.g. average ground height).

Contributions: While streaming techniques have been
widely used in computer graphics, to the best of our knowl-
edge, we are the first to employ them for building recon-
struction from aerial LiDAR data. Comparing to the state-
of-the-art, we present three key contributions:

1. We present a general streaming framework for process-
ing large-scale LiDAR data. Streaming operators and
states are defined formally and a state propagation al-
gorithm is developed to perform streaming operators
in a spatial consistent manner.

2. We show how to adapt a building reconstruction
pipeline into this streaming framework. As a result, the
new pipeline is able to construct urban models from
hundreds of millions of LiDAR points in a seamless
manner, using a consumer-level PC.

3. We propose novel segmentation and modeling mod-
ules to fit our streaming framework. A streaming
union-find set partition algorithm is designed for seg-
mentation and a principal direction grid handles the
principal direction variation among local regions in
large urban cities.

2. Related Work

We review the related work from two aspects: building
reconstruction algorithms and streaming approaches.

2.1. Building reconstruction from LiDAR

Pioneer building modeling methods [2, 13, 16] start by
converting LiDAR point cloud into a DEM (Digital Eleva-
tion Model), and then apply image processing algorithms
on these depth images to detect building footprints, fit para-
metric models and reconstruct polygons. All of them share

a similar building reconstruction pipeline with three major
steps: classification, segmentation, and building modeling.

Most existing research work is built upon this pipeline
and improves the reconstruction quality by improving indi-
vidual steps. [14] proposes a roof-topology graph to find
complex roof patterns from aerial LiDAR data. [3] creates
building models with facade by integrating aerial LiDAR
and ground based LiDAR. [10] specializes segmentation
for densely built areas. [8] presents a two-stages method
which can find optimal configuration of parametric models
via a RIMCMC sampler. [17] introduces novel algorithms
to each of the three steps.

Although automatic solutions have been provided for
various LiDAR data sets, to the best of our knowledge, none
of them can process an extremely large LiDAR data set in
a seamless manner. Instead, many of them (e.g. [10, 17])
partition huge LiDAR data into tiles, process them one at a
time, and merge the partial results together to generate the
aggregate model of a large scale city area. As mentioned
previously, artifacts can occur at tile seams and these re-
quire special processing, which is often not addressed.

2.2. Streaming methods

To solve the conflict between extremely large data sets
and computer hardware limitation, streaming methods are
developed in geometry modeling and computer graphics ar-
eas. They have succeeded in a board variety of applications,
such as mesh processing [5] and compression [4], tetrahe-
dral mesh simplification [15], level sets methods [11], point
cloud processing [12], LiDAR data rasterization [7], dy-
namic processing [9], and delaunay triangulation [6].

Here we highlight [6], [7] and [12]. [6] and [7] reveal the
local spatial coherence of aerial LIDAR data and propose
a grid-based indexing structure and a spatial finalization
mechanism, which is the basis of our approach. [12] per-
forms a sequence of operations on a data stream. To allow
data blocks to be in different states and deal with transitions
between states, [12] arranges data points into a FIFO queue
by sorting the data along one dimension of the largest ex-
tent, which is less efficient and general compared with our
state propagation mechanism for solving the same problem.

3. Pipeline Overview

An overview of our streaming pipeline is demonstrated
in Figure 2. The input LiDAR data (usually stored in a list
of disk files) is sequentially read by a pre-processing mod-
ule called Finalizer, which inserts finalization tags (markers
that indicate spatial coherence) into the data, and produces
a point stream.

Given the point stream, we design a general approach
to perform certain streaming operations in a seamless man-
ner requiring only very small amounts of data to be loaded

Splitter

Building points of each patch

Modeler

hil/)

Plane fitting

Boundary
extraction

Classifier

Classified points & spatial fin-tags

0 ®® g0 g > 04,

SRR

K Points & spatial fin-tags Jj

Ground points &
spatial fin-tags

Modeling

i

Building models

Figure 2. An illustration of the streaming building reconstruction pipeline. A pre-processing module (which is called Finalizer in [6])
inserts finalization tags (yellow ovals) and generates a point stream which flows over the Classifier and the Splitter sequentially. Both
components introduce a state-propagation mechanism so that only data with active states (solid colored cells in Classifier and Splitter) are
loaded in-core. The Splitter finally generates a point stream and a building stream; which are converted into a terrain model and various
building models using the Terrain Generator and the Modeler respectively.

in-core. Each modeling operation may involve several in-
termediate steps, which cause data to be in different states.
We propose a novel state propagation algorithm to coordi-
nate the state update among partitions of data.

In our pipeline, two specific streaming operations are
performed sequentially: the Classifier which classifies veg-
etation points from building and ground points, and the
Splitter which segments single building patches from the
building and ground points. Both are implemented follow-
ing our formulation of streaming operators and states. In the
Classifier and Splitter blocks of Figure 2, the solid colored
cells denote active (i.e. in-core) data set with different col-
ors corresponding to different streaming states; the dark red
region denotes processed and released data; and the dark
blue denotes the input waiting to be read. The active set
progresses as a frontier through the input stream until all
data is processed.

The Splitter outputs two streams: a point stream with
geometry information of all ground points and a building
stream which consists of individual building patches. The
point stream is converted to a terrain model using a Terrain
Generator; and a Modeler is responsible for turning each
building patch into a polygonal building model. The whole
urban model is finally created by combining them together.

4. Streaming Framework

In this section, we define fundamental streaming con-
cepts and present our algorithms for performing general
streaming operations.

4.1. Point streams and Finalizer

As observed by [12] and [6], spatial coherence, which
either appears in the original data set or is the result of a
resorting algorithm, can greatly improve the memory effi-
ciency in an out-of-core algorithm. To exploit such spatial
coherence, point stream is defined as the basic form of data
that is processed in a streaming framework:

Definition 1 A point stream is a FIFO queue composed of
point records and finalization tags.

A point stream is generated by inserting finalization tags
into original input data, which is done by the pre-processing
module called Finalizer. A finalization tag f 4 is a sym-
bol to indicate that all the point records in a spatial area
A has appeared in the point stream before it. This is nec-
essary because the original data usually is not spatially or-
dered strictly. When a streaming program meets f 4, it gets
the guarantee that the information within .4 is available and
further actions can be taken.

We partition the input data into 2¥ x 2* uniform rectangle
grid, and take each cell as the basic unit of spatial area in
streaming processing. Therefore, the task of our Finalizer
is to insert one finalization tag for each such cell into the
input data.

Note that the finalization tags only provide a mechanism
to reveal the spatial coherence but not to generate it. For
example, in the worst case, the last point of each grid cell
appears at the very end of the input data; the finalization
tags will then all be inserted at the end of the stream and no
memory efficiency can be produced. Fortunately, the point

sequence in the aerial LIDAR data shows remarkable spatial
coherence to make significant memory efficiency [6]. Also,
we further enhance the spatial coherence by a chunking al-
gorithm which partially resort the point records [6].

We show the finalization result of Oakland data in Figure
6(b). The colors illustrate the time when a grid cell is final-
ized in the point stream. The spatial coherence between grid
cells are revealed by the regularity of the color distribution.

4.2. Streaming operators and states

The basis of our point stream processing framework is
the following observation: most of the complicated local
algorithms can be decomposed into a series of streaming
operators, which is a generalized form of the “stream oper-
ators” defined in [12].

Definition 2 A streaming operator @1 (p;) is a local opera-
tor which requires all the points in p;’s local neighborhood
Ny (p;) to be at streaming state sy,_1 or higher state; O (p;)
takes these points as input and transit point p; to streaming
state .

Here we define a series of streaming states
80581,---,Sm. The first state so is always “Unread”
and the last state s,, is always “Written and released”.
Except for the last state, the information in a point record
at a lower state is always a subset of the information at a
higher state. In a complete streaming process, each point
sequentially experiences states from sy to s,,. And a
state transition from s;_1 to s; can only be invoked by a
streaming operator ®.

Take our Classifier module as an example. All the points
are in the initial state so =“Unread”. The first streaming
operator ¥ (p;) reads p; from the point stream into mem-
ory and changes its state from sy to s; =“Read”. The sec-
ond operator ®»(p;) collects the positions of points in p;’s
local neighborhood N> (p;), uses these information to esti-
mate p;’s normal, then transits p; into state sy = “With nor-
mals”. During this process, all the points in Na(p;) must be
at least at streaming state s, i.e. read from the stream and
loaded in-core. In a similar manner, the following opera-
tors are executed sequentially until point p; finally gets into
state s,,—1. The last stream operator ®,,(p;) then writes
it to the output stream, releases it from memory and turns
its state into s,, = “Written and released”. In this whole
process, point records which are in the first and last states
are stored in disk files, and only a small fraction of points
in intermediate states need to be loaded in-core. These in-
termediate states are called active states.

To determine when an operator ®;, can be invoked, we
define the scope radius:

Definition 3 The scope radius R(®y,) is the radius of point
pi’s neighborhood Ni(p;) required by @ (p;).

R(®},) reflects the size of the area affecting ®;,'. In most
cases it is determined by the corresponding streaming oper-
ator. E.g. the “normal estimation” operator of the Classifier
requires a scope radius equal to the neighborhood size § de-
fined in [17]. The only exception is the scope radius of the
last operator ®,,, which is forced to be the largest scope
radius of all the other streaming operators, i.e.

R((pm) - InaX{R((pl)v R((I)Q)a sy R(q)m—l)}v (L

because ®,, is the only information-subtracting operator —
once performed, the point record is no longer available in
the memory. By forcing R(®,,) to be the largest scope ra-
dius, ®,,(p;) is applied only when all the points in N, (p;)
are at least at state s,,,_1 (Written or waiting to be written),
so that no point still requires information from p; to com-
plete a streaming operator @y, k < m.

The scope radius is also helpful in determining the size
of the spatial unit (cell). We require that the side length of
a grid cell is no less than R(®,,,), so that the impact of any
streaming operator applied on a cell c is restricted within its
1-ring neighborhood. This is particularly convenient for the
state propagation algorithm in following section.

4.3. State propagation

State propagation is a algorithm which performs the
streaming operators in the correct order.

We use cell as the basic unit to perform an operator and
denote @, performed on cell ¢; ; by @y (c; ;). As discussed
before, to determine whether ®;(c; ;) can be invoked, we
only need to check if all points in ¢; ;’s 1-ring neighborhood
are at least in state s;_1. In addition, if a cell reaches a new
state si_1 by operator ®j_1, only its 1-ring neighbor cells
may receive the direct impact from this transition, e.g. a
neighbor cell may now satisfy the state prerequisite for ®y.

Based on this, the key idea of the state propagation algo-
rithm is to notify all the 1-ring neighbors whenever a cell’s
state is changed by completing a new operator.

The algorithm starts by reading a cell c,e,; from the
input point stream S;,. A recursive function cellAction()
is then called to perform steaming operators in an orderly
manner. Taking a cell ¢ and a streaming operator ®;, as
input, cellAction() first checks if the state prerequisite for
operator @y (c) is satisfied. If not, it aborts the operation;
otherwise, it performs operator @ (c), transit cell ¢ to state
sk and notifies each cell ¢* in ¢’s 1-ring neighborhood by re-
cursively calling cellAction() for ¢* and operator @ 1. In
this way, the state change of the initial cell ¢,y is propa-
gated in the grid and operators will be performed once they
are ready. The pseudo-code of the state propagation algo-
rithm is shown in Table 1.

!For convenience, we let R(®y,) = 0 when the streaming operator &y,
does not need any information from the local neighborhood, e.g. a “read
from stream” operator.

Figure 3. An example of the state propagation algorithm. The
numbers and colors denote states. When the state of a cell is
changed (marked with black frame), it notifies its 1-ring neigh-
borhood (red frame) to check if any of them is ready for the next
operator. The whole process is a recursive procedure.

Figure 3 shows an example of a state propagation proce-
dure in a 4-states problem. The state of each cell is denoted
by the number and the color of the cell. In the first step,
a cell ¢1,1 (marked by the black frame) is read from the
point stream, and its state is transited to s; via a call to cell-
Action() function, which then leads a number of streaming
operators performed on other cells and state updates. Cells
that reach the final state will be written to the output file.
The propagation terminates when no more operation is pos-
sible, and the state propagation algorithm will read a new
cell into the active set and repeat the propagation until all
input data is fully processed.

5. Streaming Building Reconstruction

In this section, we show how to adapt a building recon-
struction approach similar to [17] into our streaming frame-
work. Modules including streaming classification, stream-
ing segmentation, building modeling and terrain modeling
will be described respectively.

5.1. Streaming classification

The classification module is trained by SVM on local
geometric features [17] to classify vegetation points from
building and ground points. Five types of features based
on differential geometry properties are used: regularity 71,
horizontality F3, flatness F3, and two normal distribution
measurements F, and F5. To compute these features for a
point p, CoVariance analysis is performed twice on its local
neighborhood. The trained SVM classifier then computes
the classification result of p from these features. Finally,
the classification results on p’s neighbor points will vote
for the final label of p in a refinement step.

Since each part of this algorithm requires only the infor-
mation within a local neighborhood of point p, it is eas-
ily decomposed into a series of streaming operators and
states shown in Table 2, which are placed into our streaming
framework and form up the Classifier module.

5.2. Streaming segmentation

The segmentation module aims to divide the input points
into a ground patch and individual building patches. [17]

[kl Vain program s ok ok
Input: a point stream S;,,; a set of streaming states {so, ..., Sm }; and a
set of streaming operators {®1,..., Py, }.
Output: a point stream Soy¢.
While S, is not empty do:

e Read the next cell ¢peqr from Sy,

e Call function cellAction(cyezt,P1).
End of main program.

/*X****X—k***x******* cellAction() function ****X*******k******/
Input: a grid cell ¢ at state si_1; and a streaming operator ®y,.
For each cell ¢* in the 1-ring neighborhood of ¢ do:

e if the state of ¢* is lower than si_ 1, then return “not ready”.
/* If not returned, all cells in the 1-ring neighborhood pass the state test. */
Execute ®,(c). /* take action and change the state of ¢ to s */
For each cell ¢* in the 1-ring neighborhood of ¢ do:

o if the state of c* is sy, then call function cellAction(c*, Py, 1).
End of cellAction() function.

Table 1. State propagation algorithm.

Streaming operators Streaming states
@7 : Read data from input point stream and sg: Unread
allocate memory. . Read
®5: Apply CoVariance analysis on positions to 1 Rea
estimate normals; and compute F1 2 3.
$3: Apply CoVariance analysis on normals;
calculate F4 5; and apply SVM classifier.

So: With normals

- - - — s3: Classifi
P ,4: Refine classification by making points in s3: Classified
local neighborhood vote on result.
- - . s4: Refined
@ 5: Write point records to output point stream,
and release them from memory. s5: Written and released

Table 2. Streaming operators and states for classification.

adopts a region growing algorithm, but it is difficult to fit
into our streaming framework. Hence we propose a novel
streaming agglomerative clustering algorithm which is im-
plemented efficiently using the union-find algorithm [1].

The basic agglomerative clustering starts with each point
as a segment (or cluster). For each pair of points whose
distance is smaller than a certain threshold, the segments
they belong to are merged.

The general union-find algorithm utilizes a disjoint-set
forests data structure. Hence we use each tree in the forest to
store the points in a segment. Each point p holds a reference
r(p) to its parent point in the tree. The segment merging is
conveniently implemented by the union operation.

To accelerate the process of retrieving root point for each
segment, the find operation includes a flatten process which
links each point on the root-seeking path directly to the root
[1]. This flatten process is especially useful in our streaming
segmentation; because during the streaming process, some
points may be outputted to disk and released from the active
set. If it is the parent point of some other points still in the
active set, the children’s pointers to their parent will become
invalid. We resolve this by flattening the tree every time
merging is done, and store all the root points in a hash table,
so that every active point is guaranteed to point to a parent

Set-Union

o (o d® L, [_e
0 e° o7 |9e®
o0 .K 'f?.: o

elc & : S Cams
%0 ole-sus1" |5 ore

oo o o2\ | ee

° o _i»

| Sl | el] e

e » o o e
Set-Union

Flatten trees

Figure 4. The streaming agglomerative clustering algorithm stores set-tree roots (marked with red frame) in a hash table. It first performs a
union operation on each neighbor point pair illustrated as the dotted line in the left figure. Then the algorithm flattens the set-trees shown
in the middle figure and push new roots into the hash table (right figure).

Input: a cell c at state s1, with its 1-ring neighborhood at state s1 or
higher; root hash table H; and the distance threshold c.
/* Apply union operation over cell ¢ */
For each point pair (p, q) where p € cand ||p — q|| < «, do:
e Call function union(p, q).
/* Flatten set trees from all touched points */
For each point p in the 1-ring neighborhood of ¢ do:
e Flatten p’s root-seeking path by calling find(p).
/* Put new roots into the hash table */
For each point p in the 1-ring neighborhood of ¢ do:
e if p isroot and p € H, then push p into H.
End of union-find algorithm.

Table 3. Streaming union-find algorithm (®2).

Streaming operators
@ : Read data from input point stream and
allocate memory.
P5: Apply streaming union-find algorithm
described in Table 3.
P3: Write point records to output point stream,
and release them from memory.

Streaming states
so: Unread

s1: Read

so: Segmented

s3: Written and released

Table 4. Streaming operators and states for segmentation.

point in the hash table, which will not be released.

The pseudo-code of this algorithm is shown in Table
3. We illustrate the agglomerative clustering process us-
ing an example in Figure 4. The algorithm starts with a cell
¢ whose 1-ring neighborhood are all available in memory.
The pairs of points involved in ¢ whose distance are small
enough for a merging operation is connected in dashed
lines. To process c, a union operation is performed on each
such pair of points and their segments are merged (middle
figure). The algorithm then performs a find operation over
all the points touched in the first step to flatten all the sets
which have been changed. Finally, the new roots generated
during this process are added into the hash table.

Since this segmentation method is local, it can now be

defined as streaming operators. A list of the streaming op-
erators and corresponding states are given in Table 4.

As a result, the output point stream is decomposed into
segments of points. The largest segment is taken as the
ground patch and sent to the Ground Generator still in the
form of a point stream. The rest segments are sent to the
building modeling module.

5.3. Building modeling

The building modeling algorithm now takes over these
building patches. Since the number of points contained in
a single building patch is small, the patches are loaded into
the memory and processed one by one. In our experiments,
the largest building patch is the large structure shown in Fig-
ure 1(a), containing 3.2M points, which takes 332MB of
memory to process.

We extend the automatic building modeling algorithm in
[17] for building model reconstruction. Given a building
patch and a set of principal directions as input, The algo-
rithm of [17] fits planes to the points and snaps the plane
boundary segments onto the principal directions. In [17],
the principal directions are extracted over the whole input
data, which is problematic since we are dealing with very
large-scale input. To allow the principal directions to reflect
different boundary directions within local regions (such as
the downtown area of Atlanta shown in Figure 1(b) and the
residential area shown in Figure 1(d)), we compute a prin-
cipal direction grid (Figure 5). For each cell in this grid, a
histogram of the tangent directions of all boundary points is
computed within a local neighborhood and the peaks after
Gaussian filtering are found to be principal directions.

5.4. Terrain modeling

The objective of the terrain modeling algorithm is to ras-
terise the ground point stream into a digital elevation model.
Taking the point stream as input, the algorithm builds up a

2000

1500

1000

500

0

0 0.5 2 2.5 3

1 1.5

Figure 5. With the principal direction grid on Oakland data set, six
principal directions are detected for the blue cell (left), while two
principal directions are detected for the orange cell (right).

square grid (whose user-selected unit length determines the
precision of the terrain mesh); and counts the lowest ground
point in each grid cell. These points are later accepted as
vertices of the rasterised terrain model. The empty cells
can be filled by solving a Laplace’s equation as proposed in
[17]. However, for performance reason, we choose to apply
a linear interpolation to the gaps along each column on the
grid. We observe trivial differences between results gener-
ated by these two methods; however, the improvement on
efficiency is remarkable for city-scale data sets.

6. Experiments

We tested our streaming building reconstruction on three
different data sets, namely, Oakland, Denver, and Atlanta.
The problem scale varies from 16M points to 683M points.
Our program generates polygonal urban models for each of
them. All the experiments are done on a consumer-level PC
(Intel Core2 2.4GHz CPU, with 2GB memory and 100GB
free hard disk space). The running time and maximum
memory usage are reported in Table 5. Although the av-
erage processing speed is affected by the characteristics of
data sets, it is faster than 3 minutes per million points on all
date sets (versus 8 minutes per million points in [17]).

Benefiting from the streaming framework, the memory
footprint during our experiments is kept at a low level. The
whole pipeline consumes no more than 1GB memory at any
time to process our largest data sets (Atlanta) in one pass.
We analyze this memory-saving mechanism by showing the
Classifier module for Oakland data set in Figure 6. First,
the finalization result shown in Figure 6(b) reveals the spa-
tial coherence between streaming grid cells. Second, three
snapshots are taken during the streaming classification pro-
cessing (Figure 6(c,d,e)), showing that only cells at active

(d)

Figure 6. (a) Reconstructed urban model of Oakland downtown
area. (b) Finalization result reveals the spatial coherence between
cells; colors represent the finalization time. (c,d,e) Three snap-
shots during the streaming classification algorithm; only a small
portion of cells are at active states (bright solid colored cells).

1000

I Finalizer

I Classifier

I splitter

I Other components

800

Memory usage (MB)

Time (s) 4

Figure 7. Memory usage during experiment on Atlanta data set.

states (bright solid colored cells) are stored in memory. The
remaining cells are either waiting in the input stream or
have been written to the output stream and released from
memory. With the spatial coherence guaranteed, the active
cells are always a small fraction of the data; thus only small
amount of memory is required.

We finally demonstrate our results for Atlanta and Den-
ver respectively. The Atlanta urban model is shown in Fig-
ure 1, and the memory usage is plotted in Figure 7. The
Classifier is the most memory consuming module because
it has more active states, thus storing more cells in memory;
the Splitter is the most time consuming module because of

Model

Time (hh:mm:ss) Maximum memory usage (MB) Building | Terrain
Fin. | Cla. | Spl. | Oth. | Total || Fin. | Cla. | Spl. | Oth. | Total || #oftri. | #of tri.

Oakland data set, 1.2km-by-0.8km area, 16M points, one 437MB file, sample rate 17 points/sq.m., grid resolution 64 x 64 x 64

Oakland [[24 [11:10 [3:14 | 3:09 [17:57 J[108 [276 [103 | 23 [276 [| 62K [1.92M

Denver data set, 4km-by-3km area, 73M points, 12 files totally 1.90GB, sample rate 6 points/sq.m., grid resolution 512 x 512 x 512

Denver || 443 [5331 [2:03:56 [1523 [3:1733]| 16 [156 [72 [71 | 156 [[182K [10.7M

Atlanta data set, 5.5km-by-7.1km area, 683M points, one 11.7GB file, sample rate 17 points/sq.m., grid resolution 512 x 512 x 512

Atlanta [[34:58 [9:18:09 [11:54:29] 2:33:24 [24:21:00][209 [888 | 390 [332 [888 [[1.12M | 8.78M

Table 5. Three data sets with different sample rates are tested using our streaming building reconstruction algorithm on a consumer-level
PC. We report the running time and maximum memory usage in each pipeline module, namely, Finalizer, Classifier, Splitter, and other
components. The experiment results show the ability of our algorithm to handle extremely large data sets in an efficient manner.

the differences between local regions. In this work, we fo-
cus on the difference of principal directions. Similar idea
can be applied to building patterns and vegetation patterns.

8. Acknowledgement

We would like to thank the anonymous reviewers for
their valuable comments. We gratefully acknowledge the
sources of our data sets: Airborne 1 Corp. for Oakland and
Atlanta, Sanborn Corp. for Denver. We thank Suya You
and Yuan Li for helpful discussion. This work is partially

I Other components

Memory usage (MB)

0 2000 4000 6000 8000
Time (s)

10000 (d)
Figure 8. Urban model of Denver with three closeups shown in
(a,b,c). Although principal directions in these areas are different;
with our principal direction grid, correct principal directions are

generated for each of them. (d) Memory usage during processing.

the overhead for saving segmented patches into files. For
the Denver data set, its urban model and closeups are shown

supported by a Provost’s Fellowship from USC.

References

(1]

[2]

[3]

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press and McGraw-Hill, second edition, 2001.

A. Elaksher and J. Bethel. Reconstructing 3d buildings from lidar data. In
ISPRS Commission III, Symposium, 2002.

C. Friih, S. Jain, and A. Zakhor. Data processing algorithms for generating
textured 3d building facade meshes from laser scans and camera images. IJCV,
2005.

. - o o - . [4] M. Isenburg and S. Gumhold. Out-of-core compression for gigantic polygon
in Figure 8. Both datasets exhibit variation of principal di- meshes. In ACM SIGGRAPH, 2003.
rections across the Whole Clty Nevertheless’ lt is nice]y han_ [5] M. Isenburg and P. Lindstrom. Streaming meshes. In IEEE Visualization, 2005.
A et : : : : [6] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink. Streaming computation of
dled by our grid-based principal direction estimation. delaunay tiangalations. In ACM SIGGRAPH. 2006,
[7] M. Isenburg, Y. Liu, J. Shewchuk, J. Snoeyink, and T. Thirion. Generating
7. Conclusions raster dem from mass points via tin streaming. In Proceedings of Geographic
Information Science, 2006.
I n reamin ilding r nstruction aleo- [8] F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny. Building
. We p .eSC t a strea g build g reconstruction algo reconstruction from a single dem. In CVPR, 2008.
rithm which can prodgce seamless urban models from ex- [9] J.-F. Lalonde, N. Vandapel, and M. Hebert. Data structure for efficient dynamic
tremely large aerial LIDAR data sets on a low-end PC. A processing in 3-d. ZJRR, 2007.
general Streaming framework is proposed With formal deﬁ_ [10] B. Mat;i, H. Sawhney, S. 'Samaraseker.a, J. Kim, and‘R. Kumar. Building seg-
.. . . mentation for densely built urban regions using aerial lidar data. In CVPR,
nition of streaming operators, streaming states, and a novel 2008.
state-propagation algorithm for performing streaming oper- [11] M. Nielsen, O. Nilsson, A. Soderstrom, and K. Museth. Out-of-core and com-
ators and state updates in a consistent manner. An auto- pressed level set methods. ACM Transactions on Graphics, 2007.
. e 12] R. Pajarola. St - i ints. In IEEE Visualization, 2005.
matic building reconstruction pipeline is then adapted into (12} R. Pajarola. Stream-processing polnts. In [EEE Visualization,
. . [13] F. Rottensteiner. Automatic generation of high-quality building models from
our streamlng framework. Experlments are done on several lidar data. IEEE Computer Graphics and Applications, 2003.
large-scale data sets, which no previous approach is able to [14] V. Verma, R. Kumar, and S. Hsu. 3d building detection and modeling from
process with such a small amount of resource. acrial lidar data. In CVFR, 2006.

P ible f Kk Ti . he foll . di . [15] H. Vo, S. Callahan, P. Lindstrom, V. Pascucci, and C. Silva. Streaming simpli-
ossible Tuture work lies in the following directions. fication of tetrahedral meshes. IEEE Trans. Vis. Comput. Graph., 2007.
First, our streaming framework is general and extensible to [16] S. You, J. Hu, U. Neumann, and P. Fox. Urban site modeling from lidar. In

integrate with many other approaches, which may lead to Proceedings, Part I1I, ICCSA, 2003.
[17] Q.-Y. Zhou and U. Neumann. Fast and extensible building modeling from air-

even better performance. Second, when dealing with large-
scale data, it is necessary to build more models to describe

borne lidar data. In ACM GIS, 2008.

